CONTENTS | CHAPTER 1 | OVERVIEW | 4 | |--------------|--|----------| | 1.1 GENERAL | DESCRIPTION | 4 | | 1.2 Key Feat | TURES | 4 | | 1.3 BLOCK D | NAGRAM | <i>6</i> | | CHAPTER 2 | BOARD COMPONENTS | 9 | | 2.1 Board O | OVERVIEW | 9 | | 2.2 Configui | RATION, STATUS AND SETUP | 11 | | 2.3 GENERAL | USER INPUT/OUTPUT | 17 | | 2.4 TEMPERA | TURE SENSOR, FAN CONTROL AND POWER MONITOR | 21 | | 2.5 CLOCK C | IRCUIT | 22 | | 2.6 FLASH A | AND SSRAM MEMORY | 25 | | 2.7 DDR3 SC | O-DIMM | 28 | | 2.8 FMC Con | NNECTORS | 32 | | 2.9 SATA | | 39 | | 2.10 GPIO | | 40 | | 2.11 PCI Exp | PRESS | 43 | | CHAPTER 3 | SYSTEM BUILDER | 47 | | 3.1 Introduc | CTION | 47 | | 3.2 GENERAL | DESIGN FLOW | 48 | | 3.3 Using Sy | STEM BUILDER | 49 | | CHAPTER 4 | FLASH PROGRAMMING | 59 | | 4.1 CFI FLAS | SH MEMORY MAP | 59 | | 4.2 FPGA Co | ONFIGURE OPERATION | 60 | | 4.3 Flash Pr | ROGRAMMING WITH USERS DESIGN | 61 | | 4.4 RESTORE | FACTORY SETTINGS | | | CHAPTER 5 | PROGRAMMABLE PLL | 65 | | 5.1 Configui | RE CDCM6208 AND LMK04096B IN RTL | 65 | | 5.2 Nios II c | ONTROL FOR PLL/TEMPERATURE/POWER | 80 | |---------------|------------------------------------|-----| | CHAPTER 6 | EXAMPLES OF ADVANCED DEMONSTRATION | 86 | | 6.1 Flash an | ND SSRAM TEST | 86 | | 6.2 DDR3 SI | DRAM TEST | 89 | | 6.3 DDR3 SI | DRAM TEST BY NIOS II | 92 | | 6.4 FAN SPEE | ED CONTROL | 95 | | 6.5 UART TO | O USB CONTROL | 98 | | CHAPTER 7 | PCI EXPRESS REFERENCE DESIGN | 103 | | 7.1 PCI EXP | RESS SYSTEM INFRASTRUCTURE | 103 | | 7.2 PC PCI E | Express Software SDK | 104 | | 7.3 REFEREN | ICE DESIGN - FUNDAMENTAL | 116 | | 7.4 PCIE REI | FERENCE DESIGN – DDR3 | 123 | | CHAPTER 8 | TRANSCEIVER VERIFICATION | 130 | | 8.1 FUNCTIO | N OF THE TRANSCEIVER TEST CODE | 130 | | 8.2 FUNCTION | N OF THE TRANSCEIVER TEST CODE | 130 | | 8.1 TESTING | | 132 | | CHAPTER 9 | FMC CONNECTORS PIN OUT | 135 | | ADDITIONAL | INFORMATION | 162 | # Chapter 1 # Overview This chapter provides an overview of the TR5 Development Board and installation guide. # 1.1 General Description The Terasic TR5 Stratix V GX FPGA Development Kit provides the ideal hardware solution for designs that demand high capacity and bandwidth interface, ultra-low latency communication, high pin count and power efficiency. With an iPass PCIe gen3 connector, the TR5 is designed for the most demanding high-end applications, empowered with the Altera 28 nm Stratix V GX, delivering the best system-level integration and flexibility in the industry. The Stratix® V GX FPGA features integrated transceivers that transfer at a maximum of 12.5Gbps, this allows the TR5 to be fully compliant with version 3.0 of the PCI Express standard. Not relying on an external PHY will accelerate mainstream development of network applications enabling customers to deploy designs for a broad range of high-speed connectivity applications. For designs that demand high capacity and high speed for memory and storage, the TR5 delivers with one independent bank of DDR3 SO-DIMM RAM, one ZBT SSRAM, and high-speed parallel flash memory. The feature-set of the TR5 fully supports all high-intensity applications such as ASIC verification, data acquisition, and signal processing. # **1.2 Key Features** The following hardware is implemented on the TR5 board: - FPGA - Altera Stratix® V GX FPGA - 5SGXEA7N2F45C2 /5SGXEABN3F45I3YY #### ■ FPGA Configuration - On-Board USB Blaster II or JTAG header for FPGA programming - Fast passive parallel (FPPx16) configuration via MAX II CPLD and flash memory ### ■ General user input/output: - 4 LEDs - 4 push-buttons - 4 slide switches #### Clock System - 50MHz Oscillator - CDCM6208 Programmable PLL - LMK04096B Programmable PLL - SMA connector pairs for differential clock input and output #### ■ Memory - DDR3 SO-DIMM SDRAM - QDRII+ SRAM - FLASH - SD Card #### ■ Communication Ports - PCI Express (PCIe) x4 iPass connector - Serial ATA host and device ports - PCI Express (PCIe) x8 edge connector - One mini Uart to USB connector ## ■ System Monitor and Control - Temperature sensor - Fan control - Power monitor ## ■ Mechanical Specification • 4 FPGA Mezzanine Card (FMC) Connectors TR5 User Manual • One 40-pin Expansion Header - Power - 12V DC Input # **1.3 Block Diagram** **Figure 1-1** shows the block diagram of the TR5 board. To provide maximum flexibility for the users, all key components are connected with the Stratix V GX FPGA device. Thus, users can configure the FPGA to implement any system design. Figure 1-1 Block diagram of the TR5 board Below is more detailed information regarding the blocks in _Figure 1-1. ## Stratix V GX FPGA - 5SGXEA7N2F45C2 - 622K logic elements (LEs) - 57.16-Mbits embedded memory - 48 transceivers (12.5Gbps) - 512 18 x18 multipliers - 256 Variable-precision DSP blocks - 28 Fractional PLLs and 4DLLs - 5SGXEABN3F45I3YY - 952K logic elements (LEs) - 62.96-Mbits embedded memory - 48 transceivers (12.5Gbps) - 704 18 x18 multipliers - 352 Variable-precision DSP blocks - 28 Fractional PLLs and 4DLLs ## **JTAG Header and FPGA Configuration** - On-board USB Blaster II or JTAG header for use with the Quartus II Programmer - MAXII CPLD EPM2210 System Controller and Fast Passive Parallel (FPP) configuration ## **Memory devices** - 2MB ZBT SSRAM - Up to 8GB DDR3 SO-DIMM SDRAM - 256MB FLASH ## General user I/O - 4 user controllable LEDs - 4 user push buttons - 4 user slide switches ## **On-Board Clock** - 50MHz oscillator - Programming PLL providing clock for FMC transceivers - Programming PLL providing clock for PCIe transceiver - Programming PLL providing clocks for DDR3 SDRAM ## **Two Serial ATA ports** • SATA 3.0 standard at 6Gbps signaling rate #### **Four FMC Connectors** - 2 HPC (high-pin count) FMC connectors up to 172 x2 Single-end I/O - 2 LPC (low-pin count) FMC connectors up to 76 x2 Single-end I/O - 10 Transceiver Channels for HPC and 1 Transceiver Channel for LPC - FMC VITA 57.1 Compliant - Adjustable VADJ: 1.2V/1.5V/1.8V/2.5V/3.0V - Don't support bidirectional LVDS due to Stratix V device only support single directional LVDS ## **One 40-pin GPIO Expansion Header** - 36 FPGA I/O pins; 4 power and ground lines - I/O standards: 3.3V (with level shift from 2.5V to 3.3V) ## **External PCI Express x4 iPass Connector** - Support for PCIe x4 Gen1/2/3 - iPass connector with x4 PCI Express slot TR5 User Manual #### **Power Source** DC 12V power adapter # Chapter 2 # **Board Components** This chapter introduces all the important components on the TR5. ## **2.1 Board Overview** **Figure 2-1** is the top and bottom view of the TR5 development board. It depicts the layout of the board and indicates the location of the connectors and key components. Users can refer to this figure for relative location of the connectors and key components. Figure 2-1 FPGA Board (Top) Figure 2-2 FPGA Board (Bottom) # 2.2 Configuration, Status and Setup ### **■** Configure The FPGA board supports two configuration methods for the Stratix V FPGA: - Configure the FPGA using the on-board USB-Blaster II. - Flash memory configuration of the FPGA using stored images from the flash memory on powerup. For programming by on-board USB-Blaster II, the following procedures show how to download a configuration bit stream into the Stratix V GX FPGA: - Make sure that power is provided to the FPGA board. - Connect your PC to the FPGA board using a mini-USB cable and make sure the USB-Blaster II driver is installed on PC. - Launch Quartus II programmer and make sure the USB-Blaster II is detected. - In Quartus II Programmer, add the configuration bit stream file (.sof), check the associated "Program/Configure" item, and click "Start" to start FPGA programming. #### ■ Status LED The FPGA Board development board includes board-specific status LEDs to indicate board status. Please refer to _Table 2-1 for the description of the LED indicator. Board Reference LED Name Description D6 12-V Power Illuminates when 12-V power is active. D1 Illuminates when 3.3-V power is active. 3.3-V Power Illuminates when the FPGA is successfully configured. D21 CONF_DONE Driven by the MAX II CPLD EPM2210 System Controller. Illuminates when the MAX II CPLD EPM2210 System Controller is actively configuring the FPGA. Driven by D22 LOAD the MAX II CPLD EPM2210 System Controller with the Embedded Blaster CPLD. Illuminates when the MAX II CPLD EPM2210 System D23 ERROR Controller fails to configure the FPGA. Driven by the MAX II CPLD EPM2210 System Controller. Illuminates when FPGA is configured by the factory D24 **BOOT PAGE** configuration bit stream. See Section 2.8 FMC Connectors FMC Voltage D12~D20.D33~D35 Value Indicator **Table 2-1 Status LED** ## ■ Setup Configure Mode Control DIP switch TR5 User Manual The Configure Mode Control DIP switch (SW5) is provided to specify the configuration mode of the FPGA. As currently only one mode is supported, please set all positions as shown in **Figure 2-3**. Figure 2-3 4-Position DIP switch for Configure Mode ## ■ Select Flash Image for Configuration The Image Select DIP switch (SW4) is provided to specify the image for configuration of the FPGA. Setting SW4 to high ('0') specifies the default factory image to be loaded, setting SW4 to low ('1') specifies the TR5 to load a user-defined image, as shown in **Figure 2-4**. Figure 2-4 2-position DIP switch for Image Select #### **■** FMC VCCIO Voltage Setting Header The I/O voltage of all the four FMC connectors is adjustable within 1.2/1.5/1.8/2.5/3.0V. For example, user can adjust the I/O voltage to 2.5V to support LVDS differential I/O stand. The user can independently control the voltage of FMCA~FMCD through JP5, JP6, JP7 and JP9. As shown in **Figure 2-5**, make short circuit onto JP5 pin 7 and pin 8, the status of D12, D13 and D14 will be set as "ON/OFF/ON" for representing the FMCA VCCIO is 2.5V. **Table 2-2, Table 2-3, Table 2-4** and **Table 2-5** lists the voltage settings of the FMCA~FMCD VCCIO and their corresponding LED
display status. Figure 2-5 FMC A VCCIO Voltage Setting to 2.5V **Table 2-2 FMC A VCCIO Voltage Setting** | IDE Catting | LED Status | | | - FMC A VCCIO Voltage | |------------------|------------|-----|-----|-----------------------| | JP5 Setting | D12 | D13 | D14 | FINIC A VCCIO Voltage | | Short Pin 1 & 2 | OFF | OFF | ON | 1.2V | | Short Pin 3 & 4 | OFF | ON | OFF | 1.5V | | Short Pin 5 & 6 | OFF | ON | ON | 1.8V | | Short Pin 7 & 8 | ON | OFF | ON | 2.5V(Default) | | Short Pin 9 & 10 | ON | ON | OFF | 3.0V | Table 2-3 FMC B VCCIO Voltage Setting | IDE Cotting | | LED Status | EMC P. VCCIO Voltogo | | |------------------|-----|------------|----------------------|---------------------| | JP6 Setting | D15 | D16 | D17 | FMC B VCCIO Voltage | | Short Pin 1 & 2 | OFF | OFF | ON | 1.2V | | Short Pin 3 & 4 | OFF | ON | OFF | 1.5V | | Short Pin 5 & 6 | OFF | ON | ON | 1.8V | | Short Pin 7 & 8 | ON | OFF | ON | 2.5V(Default) | | Short Pin 9 & 10 | ON | ON | OFF | 3.0V | Table 2-4 FMC C VCCIO Voltage Setting | IP7 Sotting | LED Status | | | FMC C VCCIO Voltage | | |------------------|------------|-----|-----|-----------------------|--| | JP7 Setting | D18 D | | D20 | FINIC C VCCIO Voltage | | | Short Pin 1 & 2 | OFF | OFF | ON | 1.2V | | | Short Pin 3 & 4 | OFF | ON | OFF | 1.5V | | | Short Pin 5 & 6 | OFF | ON | ON | 1.8V | | | Short Pin 7 & 8 | ON | OFF | ON | 2.5V(Default) | | | Short Pin 9 & 10 | ON | ON | OFF | 3.0V | | Table 2-5 FMC D VCCIO Voltage Setting | JP9 Setting | LED Status | | | FMC D VCCIO Voltage | | |------------------|------------|-----|-----|-----------------------|--| | Jr9 Setting | D33 | D34 | D35 | FINIC D VCCIO Voltage | | | Short Pin 1 & 2 | OFF | OFF | ON | 1.2V | | | Short Pin 3 & 4 | OFF | ON | OFF | 1.5V | | | Short Pin 5 & 6 | OFF | ON | ON | 1.8V | | | Short Pin 7 & 8 | ON | OFF | ON | 2.5V(Default) | | | Short Pin 9 & 10 | ON | ON | OFF | 3.0V | | #### **■** FMC JTAG Header The TR5 supports individual JTAG interfaces on each FMC connector. This feature allows users to extend the JTAG chain to FMC daughter cards. The JTAG signals on each FMC connector can be removed or included in the active JTAG chain via 3-Pin header (See Figure 2-6). Table 2-6 lists the setting of the headers and their associated interfaces. Note that if the JTAG interface on FMC connector is enabled, make sure that the active JTAG chain must be a closed loop or the FPGA may not be detected. Figure 2-6 FMCC JTAG Header **Table 2-6 FMC JTAG Header Setting** | Headers | Setting | Description | |---------|-----------------|-------------------| | JP1 | Short Pin 1 & 2 | Disable FMCA JTAG | | | Short Pin 2 & 3 | Enable FMCA JTAG | | JP2 | Short Pin 1 & 2 | Disable FMCD JTAG | | JP2 | Short Pin 2 & 3 | Enable FMCD JTAG | | JP3 | Short Pin 1 & 2 | Disable FMCB JTAG | | JF3 | Short Pin 2 & 3 | Enable FMCB JTAG | | ID4 | Short Pin 1 & 2 | Disable FMCC JTAG | | JP4 | Short Pin 2 & 3 | Enable FMCC JTAG | # 2.3 General User Input/Output This section describes the user I/O interface to the FPGA. ## **■** User Defined Push-buttons The FPGA board includes four user defined push-buttons that allow users to interact with the Stratix V GX device. Each push-button provides a high logic level or a low logic level when it is not pressed or pressed, respectively. _Table 2-7 lists the board references, signal names and their corresponding Stratix V GX device pin numbers. Table 2-7 Push-button Pin Assignments, Schematic Signal Names, and Functions | Board
Reference | Schematic
Signal Name | Description | I/O
Standard | Stratix V GX Pin Number | |--------------------|--------------------------|-------------------------------------|-----------------|-------------------------| | BUTTON0 | BUTTON0 | High Logic Level when the button is | 1.5-V | PIN_BC7 | | BUTTON1 | BUTTON1 | not pressed | 1.5-V | PIN_BD7 | | BUTTON 2 | BUTTON2 | | 1.5-V | PIN_BB8 | | BUTTON 3 | BUTTON3 | | 1.5-V | PIN_BB9 | #### **■** User-Defined Slide Switch There are four slide switches on the FPGA board to provide additional FPGA input control. When a slide switch is in the DOWN position or the UPPER position, it provides a low logic level or a high logic level to the Stratix V GX FPGA. The down position provides a low logic level and the upper position provides a high logic level. _Table 2-8 lists the signal names and their corresponding Stratix V GX device pin numbers. Table 2-8 Slide Switch Pin Assignments, Schematic Signal Names, and Functions | Board
Reference | Schematic
Signal Name | Description | I/O
Standard | Stratix V GX
Pin Number | |--------------------|--------------------------|---------------------------------------|-----------------|----------------------------| | SW0 | SW0 | High logic level when SW in the UPPER | 1.5-V | PIN_AT9 | | SW1 | SW1 | position. | 1.5-V | PIN_AU8 | | SW2 | SW2 | | 1.5-V | PIN_AK9 | | SW3 | SW3 | | 1.5-V | PIN_AL9 | #### **■** User-Defined LEDs TR5 User Manual The FPGA board consists of four user-controllable LEDs to allow status and debugging signals to be driven to the LEDs from the designs loaded into the Stratix V GX device. Each LED is driven directly by the Stratix V GX FPGA. The LEDs are turned on or off when the associated pins are driven to a low or high logic level, respectively. A list of the pin names on the FPGA that are connected to the LEDs is given in _Table 2-9. Table 2-9 User LEDs Pin Assignments, Schematic Signal Names, and Functions | Board
Reference | Schematic
Signal Name | Description | I/O
Standard | Stratix V GX
Pin Number | |--------------------|--------------------------|---|-----------------|----------------------------| | LED0 | LED0 | Driving a logic 0 on the I/O port turns the LED | 1.5-V | PIN_AT32 | | LED1 | LED1 | ON. | 1.5-V | PIN_BA31 | | LED2 | LED2 | Driving a logic 1 on the I/O port turns the LED | 1.5-V | PIN_AN27 | | LED3 | LED3 | OFF. | 1.5-V | PIN_AH27 | #### **■** UART-To-USB The UART is designed to perform communication between the board and the PC, allowing a transmission speed of up to 3Mbps. This interface wouldn't support HW flow control signals. The physical interface is done using UART-USB on-board bridge from a FT232R chip and connects to the host using a USB Type-B connector. For detailed information on how to use the transceiver, please refer to the datasheet, which is available on the manufacturer's website, or under the Datasheets\FT232 folder on the Kit System CD. **Figure 2-7** shows the related schematics, and **Table 2-10** lists the UART pin assignments, signal names and functions. Figure 2-7 Connection between UART-To-USB and Stratix V GX FPGA Table 2-10 UART-To-USB Pin Assignments, Schematic Signal Names, and Functions | Board | Schematic
Signal | | | Stratix V
GX Pin | |-----------|---------------------|--------------------------|----------------------|---------------------| | Reference | Name | | | Number | | UART_TX | UART_TX | Uart TX output from FPGA | 1.2/1.5/1.8/2.5/3.0- | PIN_T26 | | | | | V | | |---------|---------|-----------------------|----------------------|---------| | UART_RX | UART_RX | Uart RX input to FPGA | 1.2/1.5/1.8/2.5/3.0- | PIN_T25 | | | | | V | | #### **■** Micro SD-Card The development board supports Micro SD card interface using 4 data lines. **Figure 2-8** shows the related signals connections between the SD Card and Stratix V GX FPGA. **Table 2-11** lists all the associated pins Figure 2-8 Connection between the SD Card Socket and Stratix V GX FPGA Table 2-11 Micro SD Card Pin Assignments, Schematic Signal Names, and Functions | | <u> </u> |
• | , , , , , , , , , , , , , , , , , , , | | |-----------|-------------------|--------------|---------------------------------------|-----------| | Schematic | ; | | | Stratix V | | Signal | Description | I/O Standard | | GX Pin | | Name | | | | Number | | SD_CLK | Serial Clock | 1.5-V | | PIN_BB39 | | SD_CMD | Command, Response | 1.5-V | | PIN_BA36 | | SD_DAT0 | Serial Data 0 | 1.5-V | | PIN_AV37 | | SD_DAT1 | Serial Data 1 | 1.5-V | | PIN_AY37 | | SD_DAT2 Serial Data 2 | 1.5-V | PIN_BB36 | |-------------------------|-------|----------| | SD_DAT3 Serial Data 3 | 1.5-V | PIN_AW37 | # 2.4 Temperature Sensor, Fan Control and Power Monitor The FPGA board is equipped with a temperature sensor, MAX1619, which provides temperature sensing and over-temperature alert. These functions are accomplished by connecting the temperature sensor to the internal temperature sensing diode of the Stratix V GX device. The temperature status and alarm threshold registers of the temperature sensor can be programmed by a two-wire SMBus, which is connected to the Stratix V GX FPGA. In addition, the 7-bit POR slave address for this sensor is set to '0011000b'. A 3-pin +12V fan located on J12 of the FPGA board is intended to reduce the temperature of the FPGA. The board is equipped with a Fan-Speed regulator and monitor MAX6650 with an I2C/SMBus interfaces, Users regulate and monitor the speed of fan depending on the measured system temperature. The TR5 has implemented a power monitor chip to monitor the board input power voltage and current. Figure 2-9 shows the connection between the power monitor chip and the Stratix V GX FPGA. The power monitor chip monitors both shunt voltage drops and board input power voltage allows user to monitor the total board power consumption. Programmable calibration value, conversion times, and averaging, combined with an internal multiplier, enable direct readouts of current in amperes and power in watts. Note that, the temperature sensor, fan control and power monitor share the same I2C/SMBUS. Figure 2-9 Connections between the temperature sensor/fan control/power monitor and the Stratix V GX FPGA Table 2-12 Temperature Sensor and Fan Speed Control Pin Assignments, Schematic Signal Names, and Functions | riamoo, ana r anotione | | | |--
--|--| | Description | I/O Standard | Stratix V GX Pin
Number | | Positive pin of temperature diode in Stratix V | - | PIN_P6 | | Negative pin of temperature diode in Stratix V | - | PIN_P7 | | SMBus clock | 1.5-V | PIN_AN11 | | SMBus data | 1.5-V | PIN_AP9 | | SMBus alert (interrupt) | 1.5-V | PIN_AR9 | | SMBus alert (interrupt) | 1.5-V | PIN_AT8 | | Active-high ALERT input | 1.5-V | PIN_AY9 | | Active-low ALERT input | 1.5-V | PIN_AM11 | | | Positive pin of temperature diode in Stratix V Negative pin of temperature diode in Stratix V SMBus clock SMBus data SMBus alert (interrupt) SMBus alert (interrupt) Active-high ALERT input | Positive pin of temperature diode in Stratix V Negative pin of temperature diode in Stratix V SMBus clock SMBus data SMBus alert (interrupt) SMBus alert (interrupt) Active-high ALERT input I/O Standard 1.5-V 1.5-V 1.5-V 1.5-V | ## 2.5 Clock Circuit TR5 User Manual The development board includes one 50 MHz and two programmable clock generators. **Figure 2-10** shows the default frequencies of on-board all external clocks going to the Stratix V GX FPGA. Figure 2-10 Clock circuit of the FPGA Board A clock buffer is used to duplicate the 50 MHz oscillator, so there are seven 50MHz clocks fed into seven different FPGA banks. The two programming clock generators are low-jitter oscillators which are used to provide special and high quality clock signals for high-speed transceivers and high bandwidth memory. Through I2C serial interface, the clock generator controllers in the Stratix V GX FPGA can be used to program the CDCM6208 and LMK04096B to generate PCIe, SATA and high bandwidth memory reference clocks respectively. Two SMA connectors and Four FMC connectors provide external differential clock input(s) and clock output(s) respectively. _Table 2-9 lists the clock source, signal names, default frequency and their corresponding Stratix V GX device pin numbers. Table 2-9 Clock Source, Signal Name, Default Frequency, Pin Assignments and Functions | Source | Schematic
Signal Name | Default
Frequency | | Stratix V
GX Pin
Number | Application | |--------|--------------------------|----------------------|---------------------------|-------------------------------|-------------| | | CLK_50_B3B | | 1.5-V | PIN_AW35 | | | | CLK_50_B4A | | 1.5-V | PIN_AP10 | | | Y1 | CLK_50_B4D | 50.0 MHz | 1.2/1.5/1.8/2.5/3.0-
V | PIN_AY18 | | | | CLK_50_B7A | | 1.2/1.5/1.8/2.5/3.0-
V | PIN_M8 | | | | CLK_50_B7D | | 1.2/1.5/1.8/2.5/3.0-
V | PIN_J18 | | |-----|------------------------|------------------|---------------------------|----------|--------------------------------| | | CLK_50_B8A | | 1.2/1.5/1.8/2.5/3.0-
V | PIN_R36 | | | | CLK_50_B8D | | 1.2/1.5/1.8/2.5/3.0-
V | PIN_R25 | | | J3 | SMA_CLKIN_p | User
Defined | 1.5-V | PIN_BC8 | External Clock Input | | J4 | SMA_CLKIN_n | User
Defined | 1.5-V | PIN_BD8 | Clock Output | | J1 | SMA_CLKOUT_p | User
Defined | 1.5-V | PIN_AV8 | | | J2 | SMA_CLKOUT_n | User
Defined | 1.5-V | PIN_AW9 | | | | FMCA_ONBOARD_REFCLK_p0 | 125 MHz | LVDS | PIN_Y38 | FMCA port xcvr reference clock | | | FMCD_ONBOARD_REFCLK_p0 | 125 MHz | LVDS | PIN_Y7 | FMCD port xcvr reference clock | | U21 | PCIE_ONBOARD_REFCLK_p | 100 MHz | LVDS | PIN_AH39 | PCle reference clock | | 021 | SATA_DEVICE_REFCLK_p | 150 MHz | LVDS | PIN_AK7 | SATA Device reference clock | | | SATA_HOST_REFCLK_p | 150 MHz | | PIN_BB33 | SATA Host reference clock | | | DDR3_REFCLK_p | 133.333
MHz | | | DDR3
reference clock | | | FMCA_ONBOARD_REFCLK_p1 | 644.53125
MHz | LVDS | PIN_T38 | FMCA port xcvr reference clock | | | FMCD_ONBOARD_REFCLK_p1 | 644.53125
MHz | LVDS | PIN_T7 | FMCD port xcvr reference clock | | U43 | FMCC_ONBOARD_REFCLK_p0 | 644.53125
MHz | LVDS | PIN_AD39 | FMCB port xcvr reference clock | | | FMCC_ONBOARD_REFCLK_p1 | 644.53125
MHz | LVDS | PIN_AD6 | FMCC port xcvr reference clock | _Table 2-10 lists the programmable oscillator control pins, signal names, I/O standard and their corresponding Stratix V GX device pin numbers. Table 2-10 Programmable oscillator control pin, Signal Name, I/O standard, Pin Assignments and Descriptions | Programmabl
Oscillator | le Schematic
Signal Name | I/O Standard | Stratix V GX Pin
Number | Description | |---------------------------|-----------------------------|--------------|----------------------------|--------------------------------| | CDCM6208 | CLOCK_SCL | 2.5-V | PIN_AR25 | I2C bus, connected | | (U21) | CLOCK_SDA | 2.5-V | PIN_BC25 | with CDCM6208 | | | LMK04906_CLK | 2.5-V | PIN_AT24 | I2C bus master output | | L MALCO 400CD | LMK04906_DATAIN | 2.5-V | PIN_BD25 | only, connected with LMK04096B | | LMK04906B
(U43) | LMK04906_DATAOUT | 1.5-V | PIN_BC29 | I2C bus master input signal | | | LMK04906_LE | 1.5-V | PIN_AT33 | LMK04096B PLL
locked signal | # 2.6 FLASH and SSRAM Memory The development board has a 1G bit CFI-compatible synchronous flash device for non-volatile storage of FPGA configuration data, user application data, and user code space, and a 2M byte ZBT SSRAM for data Cache. The flash has a 16-bit data bus and allow for FPP x16 configuration. This device is part of the shared flash and MAX (FM) bus, which connects to the flash memory and MAX II CPLD (EPM2210) System Controller. The SSRAM also has a 16-bit data bus and share address and data bus with the flash. **Figure 2-11** shows the connections between the Flash, SSRAM, MAX and Stratix V GX FPGA. Figure 2-11 Connection between the Flash, Max and Stratix V GX FPGA Table 2-11 lists the flash pin assignments, signal names, and functions. Table 2-13 Flash Memory Pin Assignments, Schematic Signal Names, and Functions | Schematic
Signal Name | Description | I/O Standard | Stratix V GX
Pin Number | |--------------------------|-------------|--------------|----------------------------| | FSM_A1 | Address bus | 2.5V | PIN_AE11 | | FSM_A2 | Address bus | 2.5V | PIN_AD14 | | FSM_A3 | Address bus | 2.5V | PIN_AE14 | | FSM_A4 | Address bus | 2.5V | PIN_AE10 | | FSM_A5 | Address bus | 2.5V | PIN_AF10 | | FSM_A6 | Address bus | 2.5V | PIN_AE12 | | FSM_A7 | Address bus | 2.5V | PIN_AF11 | | FSM_A8 | Address bus | 2.5V | PIN_AG13 | | FSM_A9 | Address bus | 2.5V | PIN_AJ10 | | FSM_A10 | Address bus | 2.5V | PIN_AF13 | | FSM_A11 | Address bus | 2.5V | PIN_AE13 | | FSM_A12 | Address bus | 2.5V | PIN_AJ11 | | FSM_A13 | Address bus | 2.5V | PIN_BD11 | | FSM_A14 | Address bus | 2.5V | PIN_AW10 | | FSM_A15 | Address bus | 2.5V | PIN_AF14 | | FSM A16 | Address bus | 2.5V | PIN AY12 | |-----------------|---------------------------------|------|----------| | FSM_A17 | Address bus | 2.5V | PIN AY10 | | FSM A18 | Address bus | 2.5V | PIN BD10 | | FSM A19 | Address bus | 2.5V | PIN_BB12 | | FSM A20 | Address bus | 2.5V | PIN BA12 | | FSM_A21 | Address bus | 2.5V | PIN BA10 | | FSM A22 | Address bus | 2.5V | PIN BC11 | | FSM A23 | Address bus | 2.5V | PIN_AE9 | | FSM A24 | Address bus | 2.5V | PIN AW11 | | FSM_A25 | Address bus | 2.5V | PIN BC10 | | FSM_A26 | Address bus | 2.5V | PIN_BB11 | | FSM_D0 | Data bus | 2.5V | PIN_AG10 | | FSM_D1 | Data bus | 2.5V | PIN_AH10 | | FSM_D2 | Data bus | 2.5V | PIN_AG11 | | FSM_D3 | Data bus | 2.5V | PIN_AK12 | | FSM_D4 | Data bus | 2.5V | PIN_AV10 | | FSM_D5 | Data bus | 2.5V | PIN_AR12 | | FSM_D6 | Data bus | 2.5V | PIN_AL12 | | FSM_D7 | Data bus | 2.5V | PIN_AR13 | | FSM_D8 | Data bus | 2.5V | PIN_AG9 | | FSM_D9 | Data bus | 2.5V | PIN_AH12 | | FSM_D10 | Data bus | 2.5V | PIN_AG12 | | FSM_D11 | Data bus | 2.5V | PIN_AL11 | | FSM_D12 | Data bus | 2.5V | PIN_AN12 | | FSM_D13 | Data bus | 2.5V | PIN_AU9 | | FSM_D14 | Data bus | 2.5V | PIN_AM13 | | FSM_D15 | Data bus | 2.5V | PIN_AJ12 | | FLASH_CLK | Flash Clock | 2.5V | PIN_AU11 | | FLASH_RESET_n | Flash Reset, active low | 2.5V | PIN_AV25 | | FLASH_CE_n | Flash Chip enable,active low | 2.5V | PIN_AU24 | | FLASH_OE_n | Flash Output enable, active low | 2.5V | PIN_AP12 | | FLASH_WE_n | Flash Write enable, active low | 2.5V | PIN_AT12 | | FLASH ADV n | | 2.5V | PIN_BD26 | | LAGII_ADV_II | low | 2.01 | | | FLASH_RDY_BSY_n | Flash ready output | 2.5V | PIN_AU25 | | SSRAM_CLK | SSRAM Clock | 2.5V | PIN_AP13 | | SSRAM_CKE_n | SSRAM Clock enable, active low | 2.5V | PIN_AW24 | | SSRAM_CE_n | SSRAM Chip enable, active low | 2.5V | PIN_AP24 | | SSRAM_WE_n | Flash Write enable, active low | 2.5V | PIN_AV11 | |-----------------|----------------------------------|------|----------| | SSRAM_OE_n | Flash output enable, active low | 2.5V | PIN_AU10 | | SSRAM_ADV | Flash Address valid, active high | 2.5V | PIN_BC26 | | SSRAM_BWA_n | SSRAM Byte Write enable | 2.5V | PIN_AY25 | | SSRAM_BWB_n | SSRAM Byte Write enable | 2.5V | PIN_BA24 | | FLASH_CLK | Clock | 2.5V | PIN_T9 | | FLASH_RESET_n | Reset | 2.5V | PIN_C17 | | FLASH_CE_n | Chip enable of of flash-0 | 2.5V | PIN_H10 | | | Chip enable of of flash-1 | 2.5V | PIN_N16 | | FLASH_OE_n | Output enable | 2.5V | PIN_C16 | | FLASH_WE_n | Write enable | 2.5V | PIN_U10 | | FLASH_ADV_n | Address valid | 2.5V | PIN_H7 | | FLASH_RDY_BSY_n | Ready of flash-0 | 2.5V | PIN_J8 | ## 2.7 DDR3 SO-DIMM The development board supports DDR3 SDRAM SO-DIMM. The DDR3 SODIMM socket is wired to support a maximum capacity of 8GB with a 64-bit data bus. Using differential DQS signaling for the DDR3 SDRAM interfaces, it is capable of running at up to 800MHz memory clock for a maximum theoretical bandwidth up to 95.4Gbps. **Figure 2-12** shows the connections between the DDR3 SDRAM SO-DIMMs and Stratix V GX FPGA. Figure 2-12 Connection between
the DDR3 and Stratix V GX FPGA The pin assignments for DDR3 SDRAM SO-DIMM are listed in Table 2-14. Table 2-14 DDR3 Pin Assignments, Schematic Signal Names, and Functions | Schematic | Description | I/O Standard | Stratix V GX Pin | |-------------|-------------|-----------------|------------------| | Signal Name | | | Number | | DDR3_DQ0 | Data [0] | SSTL-15 Class I | PIN_AH31 | | DDR3_DQ1 | Data [1] | SSTL-15 Class I | PIN_AJ31 | | DDR3_DQ2 | Data [2] | SSTL-15 Class I | PIN_AN30 | | DDR3_DQ3 | Data [3] | SSTL-15 Class I | PIN_AP30 | | DDR3_DQ4 | Data [4] | SSTL-15 Class I | PIN_AH30 | | DDR3_DQ5 | Data [5] | SSTL-15 Class I | PIN_AJ30 | | DDR3_DQ6 | Data [6] | SSTL-15 Class I | PIN_AR30 | | DDR3_DQ7 | Data [7] | SSTL-15 Class I | PIN_AT30 | | DDR3_DQ8 | Data [8] | SSTL-15 Class I | PIN_AM29 | | DDR3_DQ9 | Data [9] | SSTL-15 Class I | PIN_AN28 | | DDR3_DQ10 | Data [10] | SSTL-15 Class I | PIN_AP28 | | DDR3_I | | • • | SSTL-15 Class I | PIN_AR29 | |--------|------|-----------|-----------------|----------| | DDR3_I | | | SSTL-15 Class I | PIN_AU31 | | DDR3_I | DQ13 | | SSTL-15 Class I | PIN_AV32 | | DDR3_I | DQ14 | Data [14] | SSTL-15 Class I | PIN_AW32 | | DDR3_I | DQ15 | Data [15] | SSTL-15 Class I | PIN_AV31 | | DDR3_I | DQ16 | Data [16] | SSTL-15 Class I | PIN_AF28 | | DDR3_I | DQ17 | Data [17] | SSTL-15 Class I | PIN_AF29 | | DDR3_I | DQ18 | Data [18] | SSTL-15 Class I | PIN_AG30 | | DDR3_I | DQ19 | Data [19] | SSTL-15 Class I | PIN_AG29 | | DDR3_I | DQ20 | Data [20] | SSTL-15 Class I | PIN_AG28 | | DDR3_I | DQ21 | Data [21] | SSTL-15 Class I | PIN_AG27 | | DDR3_I | DQ22 | Data [22] | SSTL-15 Class I | PIN_AG26 | | DDR3_I | DQ23 | Data [23] | SSTL-15 Class I | PIN_AG25 | | DDR3_I | DQ24 | Data [24] | SSTL-15 Class I | PIN_BC31 | | DDR3_I | DQ25 | Data [25] | SSTL-15 Class I | PIN_BC32 | | DDR3_I | DQ26 | Data [26] | SSTL-15 Class I | PIN_BB30 | | DDR3_I | DQ27 | Data [27] | SSTL-15 Class I | PIN_BD31 | | DDR3_I | DQ28 | Data [28] | SSTL-15 Class I | PIN_BD32 | | DDR3_I | DQ29 | Data [29] | SSTL-15 Class I | PIN_BA30 | | DDR3_I | DQ30 | Data [30] | SSTL-15 Class I | PIN_AY31 | | DDR3_I | DQ31 | Data [31] | SSTL-15 Class I | PIN_AW30 | | DDR3_I | DQ32 | Data [32] | SSTL-15 Class I | PIN_BB29 | | DDR3_I | DQ33 | Data [33] | SSTL-15 Class I | PIN_BB27 | | DDR3_I | DQ34 | Data [34] | SSTL-15 Class I | PIN_BA27 | | DDR3_I | DQ35 | Data [35] | SSTL-15 Class I | PIN_AW27 | | DDR3_I | DQ36 | Data [36] | SSTL-15 Class I | PIN_AY28 | | DDR3_I | DQ37 | Data [37] | SSTL-15 Class I | PIN_BA28 | | DDR3_I | DQ38 | Data [38] | SSTL-15 Class I | PIN_AW29 | | DDR3_I | DQ39 | Data [39] | SSTL-15 Class I | PIN_AY27 | | DDR3_I | DQ40 | Data [40] | SSTL-15 Class I | PIN_AT27 | | DDR3_I | DQ41 | Data [41] | SSTL-15 Class I | PIN_AN25 | | DDR3_I | DQ42 | Data [42] | SSTL-15 Class I | PIN_AM25 | | DDR3_I | DQ43 | Data [43] | SSTL-15 Class I | PIN_AL25 | | DDR3_I | DQ44 | Data [44] | SSTL-15 Class I | PIN_AW26 | | DDR3_I | DQ45 | Data [45] | SSTL-15 Class I | PIN_AV26 | | DDR3_I | DQ46 | Data [46] | SSTL-15 Class I | PIN_AU27 | | DDR3_I | DQ47 | Data [47] | SSTL-15 Class I | PIN_AM26 | | DDR3_I | DQ48 | Data [48] | SSTL-15 Class I | PIN_AU28 | | DDR3_I | DQ49 | Data [49] | SSTL-15 Class I | PIN_AU29 | | DDR3_I | DQ50 | Data [50] | SSTL-15 Class I | PIN_AM28 | | DDR3_I | DQ51 | Data [51] | SSTL-15 Class I | PIN_AL27 | | | L | | | |-------------|------------------|---------------------------------|----------| | DDR3_DQ52 | Data [52] | SSTL-15 Class I | PIN_AV28 | | DDR3_DQ53 | Data [53] | SSTL-15 Class I | PIN_AV29 | | DDR3_DQ54 | Data [54] | SSTL-15 Class I | PIN_AL28 | | DDR3_DQ55 | Data [55] | SSTL-15 Class I | PIN_AK27 | | DDR3_DQ56 | Data [56] | SSTL-15 Class I | PIN_AK24 | | DDR3_DQ57 | Data [57] | SSTL-15 Class I | PIN_AJ24 | | DDR3_DQ58 | Data [58] | SSTL-15 Class I | PIN_AH24 | | DDR3_DQ59 | Data [59] | SSTL-15 Class I | PIN_AH25 | | DDR3_DQ60 | Data [60] | SSTL-15 Class I | PIN_AH28 | | DDR3_DQ61 | Data [61] | SSTL-15 Class I | PIN_AJ28 | | DDR3_DQ62 | Data [62] | SSTL-15 Class I | PIN_AL26 | | DDR3_DQ63 | Data [63] | SSTL-15 Class I | PIN_AK26 | | DDR3_DQS0 | Data Strobe p[0] | Differential 1.5-V SSTL Class I | PIN_AL30 | | DDR3_DQS_n0 | Data Strobe n[0] | Differential 1.5-V SSTL Class I | PIN_AL31 | | DDR3_DQS1 | Data Strobe p[1] | Differential 1.5-V SSTL Class I | PIN_AK30 | | DDR3_DQS_n1 | Data Strobe n[1] | Differential 1.5-V SSTL Class I | PIN_AL29 | | DDR3_DQS2 | Data Strobe p[2] | Differential 1.5-V SSTL Class I | PIN_AE27 | | DDR3_DQS_n2 | Data Strobe n[2] | Differential 1.5-V SSTL Class I | PIN_AE28 | | DDR3_DQS3 | Data Strobe p[3] | Differential 1.5-V SSTL Class I | PIN_AY30 | | DDR3_DQS_n3 | Data Strobe n[4] | Differential 1.5-V SSTL Class I | PIN_BA29 | | DDR3_DQS4 | Data Strobe p[4] | Differential 1.5-V SSTL Class I | PIN_BC28 | | DDR3_DQS_n4 | Data Strobe n[4] | Differential 1.5-V SSTL Class I | PIN_BD28 | | DDR3_DQS5 | Data Strobe p[5] | Differential 1.5-V SSTL Class I | PIN_AT26 | | DDR3_DQS_n5 | Data Strobe n[5] | Differential 1.5-V SSTL Class I | PIN_AU26 | | DDR3_DQS6 | Data Strobe p[6] | Differential 1.5-V SSTL Class I | PIN_AR27 | | DDR3_DQS_n6 | Data Strobe n[6] | Differential 1.5-V SSTL Class I | PIN_AR28 | | DDR3_DQS7 | Data Strobe p[7] | Differential 1.5-V SSTL Class I | PIN_AJ25 | | DDR3_DQS_n7 | Data Strobe n[7] | Differential 1.5-V SSTL Class I | PIN_AJ26 | | DDR3_DM0 | Data Mask [0] | SSTL-15 Class I | PIN_AU32 | | DDR3_DM1 | Data Mask [1] | SSTL-15 Class I | PIN_AU30 | | DDR3_DM2 | Data Mask [2] | SSTL-15 Class I | PIN_AK29 | | DDR3_DM3 | Data Mask [3] | SSTL-15 Class I | PIN_BB32 | | DDR3_DM4 | Data Mask [4] | SSTL-15 Class I | PIN_BD29 | | DDR3_DM5 | Data Mask [5] | SSTL-15 Class I | PIN_AR26 | | DDR3_DM6 | Data Mask [6] | SSTL-15 Class I | PIN_AP27 | | DDR3_DM7 | Data Mask [7] | SSTL-15 Class I | PIN_AJ27 | | DDR3_A0 | Address [0] | SSTL-15 Class I | PIN_AM32 | | DDR3_A1 | Address [1] | SSTL-15 Class I | PIN_AF31 | | DDR3_A2 | Address [2] | SSTL-15 Class I | PIN_AJ33 | | DDR3_A3 | Address [3] | SSTL-15 Class I | PIN_AE31 | | DDR3_A4 | Address [4] | SSTL-15 Class I | PIN_AP33 | | DDR3_A6 Address [6] SSTL-15 Class I PIN_AN33 DDR3_A7 Address [7] SSTL-15 Class I PIN_AK33 DDR3_A8 Address [8] SSTL-15 Class I PIN_AF32 DDR3_A9 Address [9] SSTL-15 Class I PIN_AB33 DDR3_A10 Address [10] SSTL-15 Class I PIN_AB30 DDR3_A11 Address [11] SSTL-15 Class I PIN_AB33 DDR3_A12 Address [12] SSTL-15 Class I PIN_AG33 DDR3_A13 Address [13] SSTL-15 Class I PIN_AD32 DDR3_A14 Address [15] SSTL-15 Class I PIN_AD32 DDR3_A15 Address [15] SSTL-15 Class I PIN_AY33 DDR3_CAS_n Column Address Strobe SSTL-15 Class I PIN_AB33 DDR3_BA0 Bank Address [0] SSTL-15 Class I PIN_AE33 DDR3_BA1 Bank Address [1] SSTL-15 Class I PIN_AK32 DDR3_BA2 Bank Address [2] SSTL-15 Class I PIN_AK32 DDR3_CK0 Clock p0 Differential 1.5-V SSTL Class I PIN_AR34 <tr< th=""><th></th><th></th><th></th><th></th></tr<> | | | | | |--|--------------|--------------------------|---------------------------------|----------| | DDR3_A7 Address [7] SSTL-15 Class I PIN_AK33 DDR3_A8 Address [8] SSTL-15 Class I PIN_AF32 DDR3_A9 Address [9] SSTL-15 Class I PIN_AH33 DDR3_A10 Address [10] SSTL-15 Class I PIN_AB30 DDR3_A11 Address [11] SSTL-15 Class I PIN_AB33 DDR3_A12 Address [12] SSTL-15 Class I PIN_AG33 DDR3_A13 Address [13] SSTL-15 Class I PIN_AD32 DDR3_A14 Address [14] SSTL-15 Class I PIN_AD32 DDR3_A15 Address [15] SSTL-15 Class I PIN_AY33 DDR3_RAS_n Row Address Strobe SSTL-15 Class I PIN_AB33 DDR3_CAS_n Column Address Strobe SSTL-15 Class I PIN_AE33 DDR3_BA0 Bank Address [0] SSTL-15 Class I PIN_AE32 DDR3_BA1 Bank Address [1] SSTL-15 Class I PIN_AK32 DDR3_CK0 Clock p0 Differential 1.5-V SSTL Class I PIN_AR34 DDR3_CK Clock p1 Differential 1.5-V SSTL Class I PIN_AR32 | DDR3_A5 | Address [5] | SSTL-15 Class I | PIN_AG32 | | DDR3_A8 | DDR3_A6 | Address [6] | SSTL-15 Class I | PIN_AN33 | | DDR3_A9 | DDR3_A7 | Address [7] | SSTL-15 Class I | PIN_AK33 | | DDR3_A10 Address [10] SSTL-15 Class I PIN_AE30 DDR3_A11 Address [11] SSTL-15 Class I PIN_BA33 DDR3_A12 Address [12] SSTL-15 Class I PIN_AG33 DDR3_A13 Address [13] SSTL-15 Class I PIN_AD32 DDR3_A14 Address [14] SSTL-15 Class I PIN_BA34 DDR3_A15 Address [15] SSTL-15 Class I PIN_AY33 DDR3_RAS_n Row Address Strobe SSTL-15 Class I PIN_AJ32 DDR3_CAS_n Column Address Strobe SSTL-15 Class I PIN_AE33 DDR3_BA0 Bank Address [0] SSTL-15 Class I PIN_AE29 DDR3_BA1 Bank Address [1] SSTL-15 Class I PIN_AK32 DDR3_BA2 Bank Address [2] SSTL-15 Class I PIN_AE34 DDR3_CK0 Clock p0 Differential 1.5-V SSTL Class I PIN_AR32 DDR3_CK_n0 Clock p1 Differential 1.5-V SSTL Class I PIN_AR32 DDR3_CK_n1 Clock p1 Differential
1.5-V SSTL Class I PIN_AW33 DDR3_CK_n1 Clock Enable pin 0 SSTL-15 Clas | DDR3_A8 | Address [8] | SSTL-15 Class I | PIN_AF32 | | DDR3_A11 Address [11] SSTL-15 Class I PIN_BA33 DDR3_A12 Address [12] SSTL-15 Class I PIN_AG33 DDR3_A13 Address [13] SSTL-15 Class I PIN_AD32 DDR3_A14 Address [14] SSTL-15 Class I PIN_BA34 DDR3_A15 Address [15] SSTL-15 Class I PIN_AY33 DDR3_RAS_n Row Address Strobe SSTL-15 Class I PIN_AB32 DDR3_CAS_n Column Address Strobe SSTL-15 Class I PIN_AE33 DDR3_BA0 Bank Address [0] SSTL-15 Class I PIN_AE33 DDR3_BA1 Bank Address [1] SSTL-15 Class I PIN_AE29 DDR3_BA2 Bank Address [2] SSTL-15 Class I PIN_AE34 DDR3_CK0 Clock p0 Differential 1.5-V SSTL Class I PIN_AR31 DDR3_CK_n0 Clock n0 Differential 1.5-V SSTL Class I PIN_AV34 DDR3_CK1 Clock p1 Differential 1.5-V SSTL Class I PIN_AW33 DDR3_CK2 Clock Enable pin 0 SSTL-15 Class I PIN_AY34 DDR3_CK2 Clock Enable pin 1 SSTL-15 Cl | DDR3_A9 | Address [9] | SSTL-15 Class I | PIN_AH33 | | DDR3_A12 Address [12] SSTL-15 Class I PIN_AG33 DDR3_A13 Address [13] SSTL-15 Class I PIN_AD32 DDR3_A14 Address [14] SSTL-15 Class I PIN_BA34 DDR3_A15 Address [15] SSTL-15 Class I PIN_AY33 DDR3_RAS_n Row Address Strobe SSTL-15 Class I PIN_AJ32 DDR3_CAS_n Column Address Strobe SSTL-15 Class I PIN_AE33 DDR3_BA0 Bank Address [0] SSTL-15 Class I PIN_AE29 DDR3_BA1 Bank Address [1] SSTL-15 Class I PIN_AE34 DDR3_BA2 Bank Address [2] SSTL-15 Class I PIN_AE34 DDR3_CK0 Clock p0 Differential 1.5-V SSTL Class I PIN_AR31 DDR3_CK_n0 Clock n0 Differential 1.5-V SSTL Class I PIN_AR32 DDR3_CK1 Clock p1 Differential 1.5-V SSTL Class I PIN_AW33 DDR3_CK2 Clock Enable pin 0 SSTL-15 Class I PIN_AW33 DDR3_CK2 Clock Enable pin 1 SSTL-15 Class I PIN_AW34 DDR3_ODT0 On Die Termination[0] | DDR3_A10 | Address [10] | SSTL-15 Class I | PIN_AE30 | | DDR3_A13 Address [13] SSTL-15 Class I PIN_AD32 DDR3_A14 Address [14] SSTL-15 Class I PIN_BA34 DDR3_A15 Address [15] SSTL-15 Class I PIN_AY33 DDR3_RAS_n Row Address Strobe SSTL-15 Class I PIN_AJ32 DDR3_CAS_n Column Address Strobe SSTL-15 Class I PIN_AE33 DDR3_BA0 Bank Address [0] SSTL-15 Class I PIN_AE32 DDR3_BA1 Bank Address [1] SSTL-15 Class I PIN_AE34 DDR3_BA2 Bank Address [2] SSTL-15 Class I PIN_AE34 DDR3_CK0 Clock p0 Differential 1.5-V SSTL Class I PIN_AR31 DDR3_CK_n0 Clock n0 Differential 1.5-V SSTL Class I PIN_AR32 DDR3_CK1 Clock p1 Differential 1.5-V SSTL Class I PIN_AV34 DDR3_CK2 Clock Enable pin 0 SSTL-15 Class I PIN_AY34 DDR3_CK4 Clock Enable pin 1 SSTL-15 Class I PIN_AY34 DDR3_ODT0 On Die Termination[0] SSTL-15 Class I PIN_AN31 DDR3_ODT1 On Die Termination[1] | DDR3_A11 | Address [11] | SSTL-15 Class I | PIN_BA33 | | DDR3_A14 Address [14] SSTL-15 Class I PIN_BA34 DDR3_A15 Address [15] SSTL-15 Class I PIN_AY33 DDR3_RAS_n Row Address Strobe SSTL-15 Class I PIN_AJ32 DDR3_CAS_n Column Address Strobe SSTL-15 Class I PIN_AE33 DDR3_BA0 Bank Address [0] SSTL-15 Class I PIN_AE29 DDR3_BA1 Bank Address [1] SSTL-15 Class I PIN_AK32 DDR3_BA2 Bank Address [2] SSTL-15 Class I PIN_AE34 DDR3_CK0 Clock p0 Differential 1.5-V SSTL Class I PIN_AR31 DDR3_CK_n0 Clock n0 Differential 1.5-V SSTL Class I PIN_AR32 DDR3_CK1 Clock p1 Differential 1.5-V SSTL Class I PIN_AV34 DDR3_CK2 Clock Enable pin 0 SSTL-15 Class I PIN_AW33 DDR3_CK2 Clock Enable pin 1 SSTL-15 Class I PIN_AY34 DDR3_ODT0 On Die Termination[0] SSTL-15 Class I PIN_AW31 DDR3_ODT1 On Die Termination[1] SSTL-15 Class I PIN_AW31 DDR3_CS_n0 Chip Select [0] <td>DDR3_A12</td> <td>Address [12]</td> <td>SSTL-15 Class I</td> <td>PIN_AG33</td> | DDR3_A12 | Address [12] | SSTL-15 Class I | PIN_AG33 | | DDR3_A15 Address [15] SSTL-15 Class I PIN_AY33 DDR3_RAS_n Row Address Strobe SSTL-15 Class I PIN_AJ32 DDR3_CAS_n Column Address Strobe SSTL-15 Class I PIN_AE33 DDR3_BA0 Bank Address [0] SSTL-15 Class I PIN_AE29 DDR3_BA1 Bank Address [1] SSTL-15 Class I PIN_AK32 DDR3_BA2 Bank Address [2] SSTL-15 Class I PIN_AE34 DDR3_CK0 Clock p0 Differential 1.5-V SSTL Class I PIN_AR31 DDR3_CK_n0 Clock n0 Differential 1.5-V SSTL Class I PIN_AR32 DDR3_CK1 Clock p1 Differential 1.5-V SSTL Class I PIN_AV34 DDR3_CK_n1 Clock Enable pin 0 SSTL-15 Class I PIN_AF34 DDR3_CKE0 Clock Enable pin 1 SSTL-15 Class I PIN_AY34 DDR3_ODT0 On Die Termination[0] SSTL-15 Class I PIN_AW31 DDR3_ODT1 On Die Termination[1] SSTL-15 Class I PIN_AW31 DDR3_CS_n0 Chip Select [0] SSTL-15 Class I PIN_AP31 DDR3_CS_n1 Chip Reset | DDR3_A13 | Address [13] | SSTL-15 Class I | PIN_AD32 | | DDR3_RAS_n Row Address Strobe SSTL-15 Class I PIN_AJ32 DDR3_CAS_n Column Address Strobe SSTL-15 Class I PIN_AE33 DDR3_BA0 Bank Address [0] SSTL-15 Class I PIN_AE29 DDR3_BA1 Bank Address [1] SSTL-15 Class I PIN_AK32 DDR3_BA2 Bank Address [2] SSTL-15 Class I PIN_AE34 DDR3_CK0 Clock p0 Differential 1.5-V SSTL Class I PIN_AR31 DDR3_CK_n0 Clock n0 Differential 1.5-V SSTL Class I PIN_AR32 DDR3_CK1 Clock p1 Differential 1.5-V SSTL Class I PIN_AV34 DDR3_CK_n1 Clock n1 Differential 1.5-V SSTL Class I PIN_AW33 DDR3_CKE0 Clock Enable pin 0 SSTL-15 Class I PIN_AF34 DDR3_CKE1 Clock Enable pin 1 SSTL-15 Class I PIN_AY34 DDR3_ODT0 On Die Termination[0] SSTL-15 Class I PIN_AM31 DDR3_WE_n Write Enable SSTL-15 Class I PIN_AE32 DDR3_CS_n0 Chip Select [0] SSTL-15 Class I PIN_AP31 DDR3_CS_n1 Chip R | DDR3_A14 | Address [14] | SSTL-15 Class I | PIN_BA34 | | DDR3_CAS_n Column Address Strobe SSTL-15 Class I PIN_AE33 DDR3_BA0 Bank Address [0] SSTL-15 Class I PIN_AE29 DDR3_BA1 Bank Address [1] SSTL-15 Class I PIN_AK32 DDR3_BA2 Bank Address [2] SSTL-15 Class I PIN_AE34 DDR3_CK0 Clock p0 Differential 1.5-V SSTL Class I PIN_AR31 DDR3_CK_n0 Clock n0 Differential 1.5-V SSTL Class I PIN_AR32 DDR3_CK1 Clock p1 Differential 1.5-V SSTL Class I PIN_AV34 DDR3_CK_n1 Clock n1 Differential 1.5-V SSTL Class I PIN_AW33 DDR3_CKE0 Clock Enable pin 0 SSTL-15 Class I PIN_AF34 DDR3_CKE1 Clock Enable pin 1 SSTL-15 Class I PIN_AY34 DDR3_ODT0 On Die Termination[0] SSTL-15 Class I PIN_AN31 DDR3_ODT1 On Die Termination[1] SSTL-15 Class I PIN_AM31 DDR3_WE_n Write Enable SSTL-15 Class I PIN_AB32 DDR3_CS_n0 Chip Select [0] SSTL-15 Class I PIN_AP31 DDR3_RESET_n Ch | DDR3_A15 | Address [15] | SSTL-15 Class I | PIN_AY33 | | DDR3_BA0 Bank Address [0] SSTL-15 Class I PIN_AE29 DDR3_BA1 Bank Address [1] SSTL-15 Class I PIN_AK32 DDR3_BA2 Bank Address [2] SSTL-15 Class I PIN_AE34 DDR3_CK0 Clock p0 Differential 1.5-V SSTL Class I PIN_AR31 DDR3_CK_n0 Clock n0 Differential 1.5-V SSTL Class I PIN_AR32 DDR3_CK1 Clock p1 Differential 1.5-V SSTL Class I PIN_AV34 DDR3_CK_n1 Clock n1 Differential 1.5-V SSTL Class I PIN_AW33 DDR3_CKE0 Clock Enable pin 0 SSTL-15 Class I PIN_AF34 DDR3_CKE1 Clock Enable pin 1 SSTL-15 Class I PIN_AY34 DDR3_ODT0 On Die Termination[0] SSTL-15 Class I PIN_AM31 DDR3_ODT1 On Die Termination[1] SSTL-15 Class I PIN_AM31 DDR3_WE_n Write Enable SSTL-15 Class I PIN_AB32 DDR3_CS_n0 Chip Select [0] SSTL-15 Class I PIN_AP31 DDR3_CS_n1 Chip Reset SSTL-15 Class I PIN_AR33 DDR3_EVENT_n Chip Temperat | DDR3_RAS_n | Row Address Strobe | SSTL-15 Class I | PIN_AJ32 | | DDR3_BA1 Bank Address [1] SSTL-15 Class I PIN_AK32 DDR3_BA2 Bank Address [2] SSTL-15 Class I PIN_AE34 DDR3_CK0 Clock p0 Differential 1.5-V SSTL Class I PIN_AR31 DDR3_CK_n0 Clock n0 Differential 1.5-V SSTL Class I PIN_AR32 DDR3_CK1 Clock p1 Differential 1.5-V SSTL Class I PIN_AV34 DDR3_CK_n1 Clock n1 Differential 1.5-V SSTL Class I PIN_AW33 DDR3_CKE0 Clock Enable pin 0 SSTL-15 Class I PIN_AF34 DDR3_CKE1 Clock Enable pin 1 SSTL-15 Class I PIN_AY34 DDR3_ODT0 On Die Termination[0] SSTL-15 Class I PIN_AM31 DDR3_ODT1 On Die Termination[1] SSTL-15 Class I PIN_AM31 DDR3_WE_n Write Enable SSTL-15 Class I PIN_AB32 DDR3_CS_n0 Chip Select [0] SSTL-15 Class I PIN_AP31 DDR3_CS_n1 Chip Reset SSTL-15 Class I PIN_AR33 DDR3_RESET_n Chip Temperature Event SSTL-15 Class I PIN_AU35 DDR3_SDA Chip I | DDR3_CAS_n | Column Address Strobe | SSTL-15 Class I | PIN_AE33 | | DDR3_BA2 Bank Address [2] SSTL-15 Class I PIN_AE34 DDR3_CK0 Clock p0 Differential 1.5-V SSTL Class I PIN_AR31 DDR3_CK_n0 Clock n0 Differential 1.5-V SSTL Class I PIN_AR32 DDR3_CK1 Clock p1 Differential 1.5-V SSTL Class I PIN_AV34 DDR3_CK_n1 Clock n1 Differential 1.5-V SSTL Class I PIN_AV34 DDR3_CKE_n1 Clock Enable pin 0 SSTL-15 Class I PIN_AF34 DDR3_CKE0 Clock Enable pin 1 SSTL-15 Class I PIN_AF34 DDR3_CKE1 Clock Enable pin 1 SSTL-15 Class I PIN_AY34 DDR3_ODT0 On Die Termination[0] SSTL-15 Class I PIN_AN31 DDR3_ODT1 On Die Termination[1] SSTL-15 Class I PIN_AM31 DDR3_WE_n Write Enable SSTL-15 Class I PIN_AE32 DDR3_CS_n0 Chip Select [0] SSTL-15 Class I PIN_AP31 DDR3_CS_n1 Chip Select [1] SSTL-15 Class I PIN_AP33 DDR3_RESET_n Chip Reset SSTL-15 Class I PIN_AR33 DDR3_EVENT_n Chip Temperature Event SSTL-15 Class I PIN_AU35 DDR3_SDA Chip I2C Serial Clock 1.5V PIN_AJ29 | DDR3_BA0 | Bank Address [0] | SSTL-15 Class I | PIN_AE29 | | DDR3_CK0 Clock p0 Differential 1.5-V SSTL Class I PIN_AR31 DDR3_CK_n0 Clock n0 Differential 1.5-V SSTL Class I PIN_AR32 DDR3_CK1 Clock p1 Differential 1.5-V SSTL Class I PIN_AV34 DDR3_CK_n1 Clock n1 Differential 1.5-V SSTL Class I PIN_AW33 DDR3_CKE0 Clock Enable pin 0 SSTL-15 Class I PIN_AF34 DDR3_CKE1 Clock Enable pin 1 SSTL-15 Class I PIN_AY34 DDR3_ODT0 On Die Termination[0] SSTL-15 Class I PIN_AN31 DDR3_ODT1 On Die Termination[1] SSTL-15 Class I PIN_AM31 DDR3_WE_n Write Enable SSTL-15 Class I PIN_AE32 DDR3_CS_n0 Chip Select [0] SSTL-15 Class I PIN_AP31 DDR3_CS_n1 Chip Reset SSTL-15 Class I PIN_AP33 DDR3_RESET_n Chip Reset SSTL-15 Class I PIN_AR33 DDR3_EVENT_n Chip Temperature Event SSTL-15 Class I PIN_AU35 DDR3_SDA Chip I2C Serial Clock 1.5V PIN_AJ29 | DDR3_BA1 | Bank Address [1] | SSTL-15 Class I | PIN_AK32 | | DDR3_CK_n0 Clock n0 Differential 1.5-V SSTL Class I PIN_AR32 DDR3_CK1 Clock p1 Differential 1.5-V SSTL Class I PIN_AV34 DDR3_CK_n1 Clock n1 Differential 1.5-V SSTL Class I PIN_AW33 DDR3_CKE0 Clock Enable pin 0 SSTL-15 Class I PIN_AF34 DDR3_CKE1 Clock Enable pin 1 SSTL-15 Class I PIN_AY34 DDR3_ODT0 On Die Termination[0] SSTL-15 Class I PIN_AN31 DDR3_ODT1 On Die Termination[1] SSTL-15 Class I PIN_AM31 DDR3_WE_n Write
Enable SSTL-15 Class I PIN_AE32 DDR3_CS_n0 Chip Select [0] SSTL-15 Class I PIN_AP31 DDR3_CS_n1 Chip Select [1] SSTL-15 Class I PIN_AP31 DDR3_RESET_n Chip Reset SSTL-15 Class I PIN_AR33 DDR3_EVENT_n Chip Temperature Event SSTL-15 Class I PIN_AU35 DDR3_SDA Chip I2C Serial Clock 1.5V PIN_AJ29 | DDR3_BA2 | Bank Address [2] | SSTL-15 Class I | PIN_AE34 | | DDR3_CK1 Clock p1 Differential 1.5-V SSTL Class I PIN_AV34 DDR3_CK_n1 Clock n1 Differential 1.5-V SSTL Class I PIN_AW33 DDR3_CKE0 Clock Enable pin 0 SSTL-15 Class I PIN_AF34 DDR3_CKE1 Clock Enable pin 1 SSTL-15 Class I PIN_AY34 DDR3_ODT0 On Die Termination[0] SSTL-15 Class I PIN_AN31 DDR3_ODT1 On Die Termination[1] SSTL-15 Class I PIN_AM31 DDR3_WE_n Write Enable SSTL-15 Class I PIN_AE32 DDR3_CS_n0 Chip Select [0] SSTL-15 Class I PIN_AP31 DDR3_CS_n1 Chip Select [1] SSTL-15 Class I PIN_AP31 DDR3_RESET_n Chip Reset SSTL-15 Class I PIN_AR33 DDR3_EVENT_n Chip Temperature Event SSTL-15 Class I PIN_AU35 DDR3_SDA Chip I2C Serial Clock 1.5V PIN_AJ29 | DDR3_CK0 | Clock p0 | Differential 1.5-V SSTL Class I | PIN_AR31 | | DDR3_CK_n1 Clock n1 Differential 1.5-V SSTL Class I PIN_AW33 DDR3_CKE0 Clock Enable pin 0 SSTL-15 Class I PIN_AF34 DDR3_CKE1 Clock Enable pin 1 SSTL-15 Class I PIN_AY34 DDR3_ODT0 On Die Termination[0] SSTL-15 Class I PIN_AN31 DDR3_ODT1 On Die Termination[1] SSTL-15 Class I PIN_AM31 DDR3_WE_n Write Enable SSTL-15 Class I PIN_AE32 DDR3_CS_n0 Chip Select [0] SSTL-15 Class I PIN_AP31 DDR3_CS_n1 Chip Select [1] SSTL-15 Class I PIN_AD33 DDR3_RESET_n Chip Reset SSTL-15 Class I PIN_AR33 DDR3_EVENT_n Chip Temperature Event SSTL-15 Class I PIN_AU35 DDR3_SDA Chip I2C Serial Clock 1.5V PIN_AJ29 | DDR3_CK_n0 | Clock n0 | Differential 1.5-V SSTL Class I | PIN_AR32 | | DDR3_CKE0 Clock Enable pin 0 SSTL-15 Class I PIN_AF34 DDR3_CKE1 Clock Enable pin 1 SSTL-15 Class I PIN_AY34 DDR3_ODT0 On Die Termination[0] SSTL-15 Class I PIN_AN31 DDR3_ODT1 On Die Termination[1] SSTL-15 Class I PIN_AM31 DDR3_WE_n Write Enable SSTL-15 Class I PIN_AE32 DDR3_CS_n0 Chip Select [0] SSTL-15 Class I PIN_AP31 DDR3_CS_n1 Chip Select [1] SSTL-15 Class I PIN_AD33 DDR3_RESET_n Chip Reset SSTL-15 Class I PIN_AR33 DDR3_EVENT_n Chip Temperature Event SSTL-15 Class I PIN_AU35 DDR3_SDA Chip I2C Serial Clock 1.5V PIN_AJ29 | DDR3_CK1 | Clock p1 | Differential 1.5-V SSTL Class I | PIN_AV34 | | DDR3_CKE1 Clock Enable pin 1 SSTL-15 Class I PIN_AY34 DDR3_ODT0 On Die Termination[0] SSTL-15 Class I PIN_AN31 DDR3_ODT1 On Die Termination[1] SSTL-15 Class I PIN_AM31 DDR3_WE_n Write Enable SSTL-15 Class I PIN_AE32 DDR3_CS_n0 Chip Select [0] SSTL-15 Class I PIN_AP31 DDR3_CS_n1 Chip Select [1] SSTL-15 Class I PIN_AD33 DDR3_RESET_n Chip Reset SSTL-15 Class I PIN_AR33 DDR3_EVENT_n Chip Temperature Event SSTL-15 Class I PIN_AU35 DDR3_SDA Chip I2C Serial Clock 1.5V PIN_AJ29 | DDR3_CK_n1 | Clock n1 | Differential 1.5-V SSTL Class I | PIN_AW33 | | DDR3_ODT0 On Die Termination[0] SSTL-15 Class I PIN_AN31 DDR3_ODT1 On Die Termination[1] SSTL-15 Class I PIN_AM31 DDR3_WE_n Write Enable SSTL-15 Class I PIN_AE32 DDR3_CS_n0 Chip Select [0] SSTL-15 Class I PIN_AP31 DDR3_CS_n1 Chip Select [1] SSTL-15 Class I PIN_AD33 DDR3_RESET_n Chip Reset SSTL-15 Class I PIN_AR33 DDR3_EVENT_n Chip Temperature Event SSTL-15 Class I PIN_AU35 DDR3_SDA Chip I2C Serial Clock 1.5V PIN_AJ29 | DDR3_CKE0 | Clock Enable pin 0 | SSTL-15 Class I | PIN_AF34 | | DDR3_ODT1 On Die Termination[1] SSTL-15 Class I PIN_AM31 DDR3_WE_n Write Enable SSTL-15 Class I PIN_AE32 DDR3_CS_n0 Chip Select [0] SSTL-15 Class I PIN_AP31 DDR3_CS_n1 Chip Select [1] SSTL-15 Class I PIN_AD33 DDR3_RESET_n Chip Reset SSTL-15 Class I PIN_AR33 DDR3_EVENT_n Chip Temperature Event SSTL-15 Class I PIN_AU35 DDR3_SDA Chip I2C Serial Clock 1.5V PIN_AJ29 | DDR3_CKE1 | Clock Enable pin 1 | SSTL-15 Class I | PIN_AY34 | | DDR3_WE_n Write Enable SSTL-15 Class I PIN_AE32 DDR3_CS_n0 Chip Select [0] SSTL-15 Class I PIN_AP31 DDR3_CS_n1 Chip Select [1] SSTL-15 Class I PIN_AD33 DDR3_RESET_n Chip Reset SSTL-15 Class I PIN_AR33 DDR3_EVENT_n Chip Temperature Event SSTL-15 Class I PIN_AU35 DDR3_SDA Chip I2C Serial Clock 1.5V PIN_AJ29 | DDR3_ODT0 | On Die Termination[0] | SSTL-15 Class I | PIN_AN31 | | DDR3_CS_n0 Chip Select [0] SSTL-15 Class I PIN_AP31 DDR3_CS_n1 Chip Select [1] SSTL-15 Class I PIN_AD33 DDR3_RESET_n Chip Reset SSTL-15 Class I PIN_AR33 DDR3_EVENT_n Chip Temperature Event SSTL-15 Class I PIN_AU35 DDR3_SDA Chip I2C Serial Clock 1.5V PIN_AJ29 | DDR3_ODT1 | On Die Termination[1] | SSTL-15 Class I | PIN_AM31 | | DDR3_CS_n1 Chip Select [1] SSTL-15 Class I PIN_AD33 DDR3_RESET_n Chip Reset SSTL-15 Class I PIN_AR33 DDR3_EVENT_n Chip Temperature Event SSTL-15 Class I PIN_AU35 DDR3_SDA Chip I2C Serial Clock 1.5V PIN_AJ29 | DDR3_WE_n | Write Enable | SSTL-15 Class I | PIN_AE32 | | DDR3_RESET_n Chip Reset SSTL-15 Class I PIN_AR33 DDR3_EVENT_n Chip Temperature Event SSTL-15 Class I PIN_AU35 DDR3_SDA Chip I2C Serial Clock 1.5V PIN_AJ29 | DDR3_CS_n0 | Chip Select [0] | SSTL-15 Class I | PIN_AP31 | | DDR3_EVENT_n Chip Temperature Event SSTL-15 Class I PIN_AU35 DDR3_SDA Chip I2C Serial Clock 1.5V PIN_AJ29 | DDR3_CS_n1 | Chip Select [1] | SSTL-15 Class I | PIN_AD33 | | DDR3_SDA Chip I2C Serial Clock 1.5V PIN_AJ29 | DDR3_RESET_n | Chip Reset | SSTL-15 Class I | PIN_AR33 | | | DDR3_EVENT_n | Chip Temperature Event | SSTL-15 Class I | PIN_AU35 | | DDR3_SCL Chip I2C Serial Data Bus 1.5V PIN_AT29 | DDR3_SDA | Chip I2C Serial Clock | 1.5V | PIN_AJ29 | | | DDR3_SCL | Chip I2C Serial Data Bus | 1.5V | PIN_AT29 | ## 2.8 FMC Connectors The FPGA Mezzanine Card (FMC) interface provides a mechanism to extend the peripheral-set of an FPGA host board by means of add-on daughter cards, which can address today's high speed signaling requirements as well as low-speed device interface support. The FMC interfaces support JTAG, clock outputs and inputs, high-speed serial I/O (transceivers), and single-ended or differential signaling. The detailed specifications of the FMC connectors are described below: #### ■ 4 FMC Connector There are four FMC connectors on the TR5 board are: FMCA, FMCB, FMCC, FMCD. Both FMCA and FMCD are High Pin Count (HPC) size of connectors and FMCB and FMCC are Low Pin Count (LPC) size of connectors (See **Figure 2-12**). The HPC connector on TR5 board can provides 172 user-define, single-ended signals (include clock signals) and 10 serial transceiver pairs (See **Figure 2-14**). The LPC connector can provides 76 user-define, single-ended signals (include clock signals) and 1 serial transceiver pairs (See **Figure 2-15**). The HPC and LPC connectors use the same mechanical connector. The only difference is which signals are actually populated. Thus, cards with LPC connectors can be plugged into HPC sites. Please note that some standard FMC cards may not work with TR5 due to unidirectional LVDS due to Stratix V device. Figure 2-13 FMC connectors on TR5 board | | K | J | Н | G | F | E | D | С | В | Α | |----|--------------|--------------|------------|------------|-----------|-----------|---------------|-----------|---------------|-----------| | 1 | VREF_B_M2C | GND | VREF_A_M2C | GND | PG_M2C | GND | PG_C2M | GND | NC | GND | | 2 | GND | CLK3_BIDIR_P | NC | CLK1_M2C_P | GND | HA01_P_CC | GND | DP0_C2M_P | GND | DP1_M2C_P | | 3 | GND | CLK3_BIDIR_N | GND | CLK1_M2C_N | GND | HA01_N_CC | GND | DP0_C2M_N | GND | DP1_M2C_N | | 4 | CLK2_BIDIR_P | GND | CLK0_M2C_P | GND | HA00_P_CC | GND | GBTCLK0_M2C_P | GND | DP9_M2C_P | GND | | 5 | CLK2_BIDIR_N | GND | CLK0_M2C_N | GND | HA00_N_CC | GND | GBTCLK0_M2C_N | GND | DP9_M2C_N | GND | | 6 | GND | HA03_P | GND | LA00_P_CC | GND | HA05_P | GND | DP0_M2C_P | GND | DP2_M2C_P | | 7 | HA02_P | HA03_N | LA02_P | LA00_N_CC | HA04_P | HA05_N | GND | DP0_M2C_N | GND | DP2_M2C_N | | 8 | HA02_N | GND | LA02_N | GND | HA04_N | GND | LA01_P_CC | GND | DP8_M2C_P | GND | | 9 | GND | HA07_P | GND | LA03_P | GND | HA09_P | LA01_N_CC | GND | DP8_M2C_N | GND | | 10 | HA06_P | HA07_N | LA04_P | LA03_N | HA08_P | HA09_N | GND | LA06_P | GND | DP3_M2C_P | | 11 | HA06_N | GND | LA04_N | GND | HA08_N | GND | LA05_P | LA06_N | GND | DP3_M2C_N | | 12 | GND | HA11_P | GND | LA08_P | GND | HA13_P | LA05_N | GND | DP7_M2C_P | GND | | 13 | HA10_P | HA11_N | LA07_P | LA08_N | HA12_P | HA13_N | GND | GND | DP7_M2C_N | GND | | 14 | HA10_N | GND | LA07_N | GND | HA12_N | GND | LA09_P | LA10_P | GND | DP4_M2C_P | | 15 | GND | HA14_P | GND | LA12_P | GND | HA16_P | LA09_N | LA10_N | GND | DP4_M2C_N | | 16 | HA17_P_CC | HA14_N | LA11_P | LA12_N | HA15_P | HA16_N | GND | GND | DP6_M2C_P | GND | | 17 | HA17_N_CC | GND | LA11_N | GND | HA15_N | GND | LA13_P | GND | DP6_M2C_N | GND | | 18 | GND | HA18_P | GND | LA16_P | GND | HA20_P | LA13_N | LA14_P | GND | DP5_M2C_P | | 19 | HA21_P | HA18_N | LA15_P | LA16_N | HA19_P | HA20_N | GND | LA14_N | GND | DP5_M2C_N | | 20 | HA21_N | GND | LA15_N | GND | HA19_N | GND | LA17_P_CC | GND | GBTCLK1_M2C_P | GND | | 21 | GND | HA22_P | GND | LA20_P | GND | HB03_P | LA17_N_CC | GND | GBTCLK1_M2C_N | GND | | 22 | HA23_P | HA22_N | LA19_P | LA20_N | HB02_P | HB03_N | GND | LA18_P_CC | GND | DP1_C2M_P | | 23 | HA23_N | GND | LA19_N | GND | HB02_N | GND | LA23_P | LA18_N_CC | GND | DP1_C2M_N | | 24 | GND | HB01_P | GND | LA22_P | GND | HB05_P | LA23_N | GND | DP9_C2M_P | GND | | 25 | HB00_P_CC | HB01_N | LA21_P | LA22_N | HB04_P | HB05_N | GND | GND | DP9_C2M_N | GND | | 26 | HB00_N_CC | GND | LA21_N | GND | HB04_N | GND | LA26_P | LA27_P | GND | DP2_C2M_P | | 27 | GND | HB07_P | GND | LA25_P | GND | HB09_P | LA26_N | LA27_N | GND | DP2_C2M_N | | 28 | HB06_P_CC | HB07_N | LA24_P | LA25_N | HB08_P | HB09_N | GND | GND | DP8_C2M_P | GND | | 29 | HB06_N_CC | GND | LA24_N | GND | HB08_N | GND | TCK | GND | DP8_C2M_N | GND | | 30 | GND | HB11_P | GND | LA29_P | GND | HB13_P | TDI | SCL | GND | DP3_C2M_P | | 31 | HB10_P | HB11_N | LA28_P | LA29_N | HB12_P | HB13_N | TDO | SDA | GND | DP3_C2M_N | | 32 | HB10_N | GND | LA28_N | GND | HB12_N | GND | 3P3VAUX | GND | DP7_C2M_P | GND | | 33
 GND | HB15_P | GND | LA31_P | GND | HB19_P | TMC | GND | DP7_C2M_N | GND | | 34 | HB14_P | HB15_N | LA30_P | LA31_N | HB16_P | HB19_N | TRST_L | GA1 | GND | DP4_C2M_P | | 35 | HB14_N | GND | LA30_N | GND | HB16_N | GND | GA1 | 12P0V | GND | DP4_C2M_N | | 36 | GND | HB18_P | GND | LA33_P | GND | HB21_P | 3P3V | GND | DP6_C2M_P | GND | | 37 | HB17_P_CC | HB18_N | LA32_P | LA33_N | HB20_P | HB21_N | GND | GND | DP6_C2M_N | GND | | 38 | HB17_N_CC | GND | LA32_N | GND | HB20_N | GND | 3P3V | 12P0V | GND | DP5_C2M_P | | 39 | GND | NC | GND | VADJ | GND | VADJ | GND | 3P3V | GND | DP5_C2M_N | | 40 | NC | GND | VADJ | GND | VADJ | GND | 3P3V | GND | NC | GND | Figure 2-14 Pin-Out of the high pin count FMC connector | | K | J | Н | G | F | E | D | С | В | Α | |----|----|----|------------|------------|----|----|---------------|-----------|----|----| | 1 | NC | NC | VREF_A_M2C | GND | NC | NC | PG_C2M | GND | NC | NC | | 2 | NC | NC | NC | CLK1_M2C_P | NC | NC | GND | DP0_C2M_P | NC | NC | | 3 | NC | NC | GND | CLK1_M2C_N | NC | NC | GND | DP0_C2M_N | NC | NC | | 4 | NC | NC | CLK0_M2C_P | GND | NC | NC | GBTCLK0_M2C_P | GND | NC | NC | | 5 | NC | NC | CLK0_M2C_N | GND | NC | NC | GBTCLK0_M2C_N | GND | NC | NC | | 6 | NC | NC | GND | LA00_P_CC | NC | NC | GND | DP0_M2C_P | NC | NC | | 7 | NC | NC | LA02_P | LA00_N_CC | NC | NC | GND | DP0_M2C_N | NC | NC | | 8 | NC | NC | LA02_N | GND | NC | NC | LA01_P_CC | GND | NC | NC | | 9 | NC | NC | GND | LA03_P | NC | NC | LA01_N_CC | GND | NC | NC | | 10 | NC | NC | LA04_P | LA03_N | NC | NC | GND | LA06_P | NC | NC | | 11 | NC | NC | LA04_N | GND | NC | NC | LA05_P | LA06_N | NC | NC | | 12 | NC | NC | GND | LA08_P | NC | NC | LA05_N | GND | NC | NC | | 13 | NC | NC | LA07_P | LA08_N | NC | NC | GND | GND | NC | NC | | 14 | NC | NC | LA07_N | GND | NC | NC | LA09_P | LA10_P | NC | NC | | 15 | NC | NC | GND | LA12_P | NC | NC | LA09_N | LA10_N | NC | NC | | 16 | NC | NC | LA11_P | LA12_N | NC | NC | GND | GND | NC | NC | | 17 | NC | NC | LA11_N | GND | NC | NC | LA13_P | GND | NC | NC | | 18 | NC | NC | GND | LA16_P | NC | NC | LA13_N | LA14_P | NC | NC | | 19 | NC | NC | LA15_P | LA16_N | NC | NC | GND | LA14_N | NC | NC | | 20 | NC | NC | LA15_N | GND | NC | NC | LA17_P_CC | GND | NC | NC | | 21 | NC | NC | GND | LA20_P | NC | NC | LA17_N_CC | GND | NC | NC | | 22 | NC | NC | LA19_P | LA20_N | NC | NC | GND | LA18_P_CC | NC | NC | | 23 | NC | NC | LA19_N | GND | NC | NC | LA23_P | LA18_N_CC | NC | NC | | 24 | NC | NC | GND | LA22_P | NC | NC | LA23_N | GND | NC | NC | | 25 | NC | NC | LA21_P | LA22_N | NC | NC | GND | GND | NC | NC | | 26 | NC | NC | LA21_N | GND | NC | NC | LA26_P | LA27_P | NC | NC | | 27 | NC | NC | GND | LA25_P | NC | NC | LA26_N | LA27_N | NC | NC | | 28 | NC | NC | LA24_P | LA25_N | NC | NC | GND | GND | NC | NC | | 29 | NC | NC | LA24_N | GND | NC | NC | TCK | GND | NC | NC | | 30 | NC | NC | GND | LA29_P | NC | NC | TDI | SCL | NC | NC | | 31 | NC | NC | LA28_P | LA29_N | NC | NC | TDO | SDA | NC | NC | | 32 | NC | NC | LA28_N | GND | NC | NC | 3P3VAUX | GND | NC | NC | | 33 | NC | NC | GND | LA31_P | NC | NC | TMC | GND | NC | NC | | 34 | NC | NC | LA30_P | LA31_N | NC | NC | TRST_L | GA1 | NC | NC | | 35 | NC | NC | LA30_N | GND | NC | NC | GA1 | 12P0V | NC | NC | | 36 | NC | NC | GND | LA33_P | NC | NC | 3P3V | GND | NC | NC | | 37 | NC | NC | LA32_P | LA33_N | NC | NC | GND | GND | NC | NC | | 38 | NC | NC | LA32_N | GND | NC | NC | 3P3V | 12P0V | NC | NC | | 39 | NC | NC | GND | VADJ | NC | NC | GND | 3P3V | NC | NC | | 40 | NC | NC | VADJ | GND | NC | NC | 3P3V | GND | NC | NC | Figure 2-15 Pin-Out of the low pin count FMC connector #### **■** Clock Interface Due to the limitation of the FPGA clock input pin numbers, not all the FMC ports have same clock interface. **Table 2-15** shows the FPGA dedicated clock input pin placement on each FMC port. Table 2-15 FMC clock interface distribution | FMC Clock in/out pin | FPGA Clock Input Pin Placement | | | | | | | |----------------------|--------------------------------|--------|-------|--------|--|--|--| | name | FMCA | FMCB | FMCC | FMCD | | | | | CLK0_M2C_P | I/O | CLK22p | I/O | I/O | | | | | CLK0_M2C_N | 1/0 | CLK22n | I/O | I/O | | | | | CLK1_M2C_P | 1/0 | CLK23p | I/O | CLK15p | | | | | CLK1_M2C_N | 1/0 | CLK23n | I/O | CLK15n | | | | | HA01_P_CC | CLK17p | N/A | N/A | CLK14p | | | | | HA01_N_CC | CLK17n | N/A | N/A | CLK14n | | | | | LA01_P_CC | CLK19p | CLK21p | CLK7p | CLK13p | | | | | LA01_N_CC | CLK19n | CLK21n | CLK7n | CLK13n | | | | Please note that, all the dedicated clock pin of the FPGA are connected to external termination resistors (See Figure 2-16). IF users want to us these I/O as single-end standard, pleaser remove these resistors. Figure 2-16 Termination resistors on FMC clock I/Os ## **■** Power Supply The TR5 board provides 12V, 3.3V and VCCIO_FMC power through FMC ports. **Table 2-16** indicates the maximum power consumption for all FMC ports. Please note that this table shows the total max current limit for all six ports, not just for one. Also, the 12V DC power supplies from the FMC ports have fuses for protection. Users who don't need the power from the FMC can remove these fuses to cut the power on connector. **CAUTION.** Before powering on the TR5 board with a daughter card, please check to see if there is a short circuit between the power pins and FPGA I/O. Table 2-16 Power Supply of the FMC | Supplied Voltage | Max. Current Limit | |------------------|-------------------------------| | 12V | 3A | | 3.3V | 3A | | VCCIO_FMC | FMCA: 12A; FMCB/FMCC/FMCD: 6A | #### ■ Adjustable I/O Standards The FPGA I/O standards of the FMC ports can be adjusted by configuring the header position. Each port can be individually adjusted to 1.5V, 1.8V, 2.5V or 3.0V via jumpers on the TR5 board. For detailed setting, please refer to Section 2.2. #### **■ JTAG Chain on FMC** Figure 2-17 shows the JTAG chain loop of the TR5 board. The JTAG interface on the FMC connectors can be activated through four 3-pin headers. For detailed setting, please refer to Section 2.2. Figure 2-17 JTAG Chain for a Standalone TR5 ## ■ Component Information of the FMC Connector **Table 2-17** shows the manufacture and part numbers of the FMC connector. **Table 2-17 Component information of the FMC connector** | Connector Type | | Manufacturer | Part Number | |--------------------|---------------------|--------------|---------------| | Female | High Pin Count(HPC) | SAMTEC | ASP-134486-01 | | (For Mother Board) | Low Pin Count(LPC) | SAMTEC | ASP-134603-01 | | Male | High Pin Count(HPC) | SAMTEC | ASP-134488-01 | | (For Daughter Board) | Low Pin Count(LPC) | SAMTEC | ASP-134604-01 | | |----------------------|--------------------|--------|---------------|--| |----------------------|--------------------|--------|---------------|--| #### **2.9 SATA** The two Serial ATA (SATA) ports are available on the FPGA development board which are computer bus standard with a primary function of transferring data between the motherboard and mass storage devices (such as hard drives, optical drives, and solid-state disks). Supporting a storage interface is just one of many different applications for which an FPGA can be used in storage appliances. The Stratix V GX device can bridge different protocols such as bridging simple bus I/Os like PCI Express (PCIe) to SATA or network interfaces such as Gigabit Ethernet (GbE) to SATA. The SATA interface supports SATA 3.0 standard with connection speed of 6 Gbps based on Stratix V GX device with integrated transceivers compliant to SATA electrical standards. The two Serial ATA (SATA) ports include one available port for device and one available port for host capable of implementing SATA solution with a design that consists of both host and target (device side) functions. **Figure 2-18** shows the connections between the SATA and Stratix V GX FPGA. Figure 2-18 Connection between the SATA and Stratix V GX FPGA _Table 2-18, list the SATA pin assignments and signal names relative to the Stratix V GX device. Table 2-18 SATA Pin Assignments, Schematic Signal Names, and Functions | Schematic
Signal Name | Description | I/O Standard | Stratix V
GX Pin
Number | |--------------------------|------------------------------|--------------|-------------------------------| | SATA_HOST_REFCLK_p | SATA Host reference clock | 1.4-V PCML | PIN_AH6 | | SATA_HOST_TX_p | SATA Host transmitter data | 1.4-V PCML | PIN_AU4 | | SATA_HOST_RX_p | SATA Host Receiver data | 1.4-V PCML | PIN_AY2 | | SATA_DEVICE_REFCLK_p | SATA Device reference clock | 1.4-V PCML | PIN_AK7 | | SATA_DEVICE_TX_p | SATA Device transmitter data | 1.4-V PCML | PIN_AY6 | | SATA_DEVICE_RX_p | SATA Device Receiver data | 1.4-V PCML | PIN_BB2 | ## **2.10 GPIO** The TR5 Board provides a 40-pin expansion header. The header connects directly to 36 pins of the Stratix V GX FPGA, and also provides DC +5V (VCC5), DC +3.3V (VCC3P3), and two GND pins. **Figure 2-19** shows the I/O distribution of the GPIO connector. The maximum power consumption of the daughter card that connects to GPIO port is shown in **Table 2-19**. Figure 2-19 GPIO Pin Arrangement **Table 2-19 Power Supply of the Expansion Header** | Supplied Voltage | Max. Current Limit | |------------------|--------------------| | 5V | 2A | | 3.3V | 3A | Each pin on the expansion headers is connected to a level shift that provides an I/O voltage level shift from 2.5V to 3.3V for the daughter card. **Figure 2-20** shows the level-shift circuitry for only one of the pin on the header, but this circuitry is included for all 36 data pins. Figure 2-20 Connections between the GPIO connector and Stratix V GX FPGA **Table 2-20** shows all the pin assignments of the GPIO connector. Table 2-20 GPIO Pin Assignments, Schematic Signal Names, and Functions | Signal Name | Description | I/O Stand | Stratix V GX Pin Number | |-------------|-------------------------|-----------|-------------------------| |
GPIO[0] | GPIO Connection DATA[0] | 2.5V | PIN_AU36 | | GPIO[1] | GPIO Connection DATA[1] | 2.5V | PIN_AE36 | | GPIO[2] | GPIO Connection DATA[2] | 2.5V | PIN_AF35 | | GPIO[3] | GPIO Connection DATA[3] | 2.5V | PIN_AE35 | | GPIO[4] | GPIO Connection DATA[4] | 2.5V | PIN_AN36 | | GPIO[5] | GPIO Connection DATA[5] | 2.5V | PIN_AP36 | | GPIO[6] | GPIO Connection | 2.5V | PIN AG34 | |----------|--------------------------|-------|----------| | | DATA[6] | 2.5 V | FIN_AG54 | | GPIO[7] | GPIO Connection DATA[7] | 2.5V | PIN_AK35 | | GPIO[8] | GPIO Connection DATA[8] | 2.5V | PIN_AN34 | | GPIO[9] | GPIO Connection DATA[9] | 2.5V | PIN_AH34 | | GPIO[10] | GPIO Connection DATA[10] | 2.5V | PIN_AL35 | | GPIO[11] | GPIO Connection DATA[11] | 2.5V | PIN_AH22 | | GPIO[12] | GPIO Connection DATA[12] | 2.5V | PIN_AP34 | | GPIO[13] | GPIO Connection DATA[13] | 2.5V | PIN_AJ23 | | GPIO[14] | GPIO Connection DATA[14] | 2.5V | PIN_AJ34 | | GPIO[15] | GPIO Connection DATA[15] | 2.5V | PIN_AJ22 | | GPIO[16] | GPIO Connection DATA[16] | 2.5V | PIN_AK23 | | GPIO[17] | GPIO Connection DATA[17] | 2.5V | PIN_AL23 | | GPIO[18] | GPIO Connection DATA[18] | 2.5V | PIN_AL24 | | GPIO[19] | GPIO Connection DATA[19] | 2.5V | PIN_AK21 | | GPIO[20] | GPIO Connection DATA[20] | 2.5V | PIN_AM23 | | GPIO[21] | GPIO Connection DATA[21] | 2.5V | PIN_AL21 | | GPIO[22] | GPIO Connection DATA[22] | 2.5V | PIN_AN23 | | GPIO[23] | GPIO Connection DATA[23] | 2.5V | PIN_AU23 | | GPIO[24] | GPIO Connection DATA[24] | 2.5V | PIN_AR24 | | GPIO[25] | GPIO Connection DATA[25] | 2.5V | PIN_BA25 | | GPIO[26] | GPIO Connection DATA[26] | 2.5V | PIN_AR23 | | GPIO[27] | GPIO Connection DATA[27] | 2.5V | PIN_BB24 | |----------|--------------------------|------|----------| | GPIO[28] | GPIO Connection DATA[28] | 2.5V | PIN_BC23 | | GPIO[29] | GPIO Connection DATA[29] | 2.5V | PIN_AT23 | | GPIO[30] | GPIO Connection DATA[30] | 2.5V | PIN_AV23 | | GPIO[31] | GPIO Connection DATA[31] | 2.5V | PIN_BD23 | | GPIO[32] | GPIO Connection DATA[32] | 2.5V | PIN_BB26 | | GPIO[33] | GPIO Connection DATA[33] | 2.5V | PIN_AW23 | | GPIO[34] | GPIO Connection DATA[34] | 2.5V | PIN_AY24 | | GPIO[35] | GPIO Connection DATA[35] | 2.5V | PIN_BB23 | ## 2.11 PCI Express The TR5 development board features one PCIe Express **downstream** interfaces (x4 lane) which are designed to interface with a PC motherboard x4 slot via PCIe cable and PCIe adapter card. Utilizing built-in transceivers on a Stratix V GX device, it is able to provide a fully integrated PCI Express-compliant solution for multi-lane (x4) applications. With the PCI Express hard IP block incorporated in the Stratix V GX device, it will allow users to implement simple and fast protocols, as well as saving logic resources for logic applications. The PCI Express interface supports complete PCI Express Gen1 at 2.5Gbps/lane, Gen2 at 5.0Gbps/lane, and Gen3 at 8.0Gbps/lane protocol stack solution compliant to PCI Express base specification 3.0 that includes PHY-MAC, Data Link, and transaction layer circuitry embedded in PCI Express hard IP blocks. To use PCIe interface, two external associated devices will be needed to establish a link with PC. First, a PCIe half-height add-in host card with a PCIe x4 cable connector called PCA (PCIe Cabling Adapter Card and See Figure 2-21) will be used to plug into the PCIe slot on a mother board. Then, a PCIe x4 cable (See **Figure 2-22**) will be used to connect TR5 board and PCIe add-in card as shown in **Figure 2-23**, the longest length is up to 3 meters. These two associated devices are not included in TR5 kit. To purchase the PCA card as well as the external cable, please refer to Terasic website *pca.terasic.com* and *PCIe_Cable.terasic.com*. Figure 2-21 PCIe Cabling Adaptor(PCA) card Figure 2-22 PCIe External Cable Figure 2-23 PCle Link Setup between TR5 and PC Figure 2-24 PCI Express Pin Connection _Table 2-22 summarizes the PCI Express pin assignments of the signal names relative to the Stratix #### V GX FPGA. Table 2-22 PCI Express Pin Assignments, Schematic Signal Names, and Functions | Schematic
Signal Name | Description | I/O Standard | Stratix V GX Pin
Number | |--------------------------|--------------------------|--------------|----------------------------| | PCIE_REFCLK_p | PCIe reference clock | HCSL | PIN_AK38 | | PCIE_PREST_n | PCIe present, active low | 1.5-V | PIN_AU33 | | PCIE_WAKE_n | PCIe wake | 1.5-V | PIN_BD35 | | PCIE_TX_p[0] | PCIe Transmitter data p0 | 1.4-V PCML | PIN_AY39 | | PCIE_RX_p[0] | PCIe Receiver data p0 | 1.4-V PCML | PIN_BB43 | | PCIE_TX_p[1] | PCIe Transmitter data p1 | 1.4-V PCML | PIN_AV39 | | PCIE_RX_p[1] | PCIe Receiver data p1 | 1.4-V PCML | PIN_BA41 | | PCIE_TX_p[2] | PCIe Transmitter data p2 | 1.4-V PCML | PIN_AT39 | | PCIE_RX_p[2] | PCIe Receiver data p2 | 1.4-V PCML | PIN_AW41 | | PCIE_TX_p[3] | PCIe Transmitter data p3 | 1.4-V PCML | PIN_AU41 | | PCIE_RX_p[3] | PCIe Receiver data p3 | 1.4-V PCML | PIN_AY43 | # Chapter 3 # System Builder This chapter describes how users can create a custom design project on the FPGA board by using the Software Tools – System Builder. ## 3.1 Introduction The System Builder is a Windows based software utility, designed to assist users to create a Quartus II project for the FPGA board within minutes. The generated Quartus II project files include: - Quartus II Project File (.qpf) - Quartus II Setting File (.qsf) - Top-Level Design File (.v) - External PLL Controller (.v) - Synopsis Design Constraints file (.sdc) - Pin Assignment Document (.htm) The System Builder not only can generate the files above, but can also provide error-checking rules to handle situation that are prone to errors. The common mistakes that users encounter are the following: - Board damaged for wrong pin/bank voltage assignment. - Board malfunction caused by wrong device connections or missing pin counts for connected ends. - Performance that has dropped because of improper pin assignments. ## **3.2 General Design Flow** This section will introduce the general design flow to build a project for the FPGA board via the System Builder. The general design flow is illustrated in the **Figure 3-1**. Users should launch System Builder and create a new project according to their design requirements. When users complete the settings, the System Builder will generate two major files which include top-level design file (.v) and the Quartus II setting file (.qsf). The top-level design file contains top-level Verilog wrapper for users to add their own design/logic. The Quartus II setting file contains information such as FPGA device type, top-level pin assignment, and I/O standard for each user-defined I/O pin. Finally, the Quartus II programmer must be used to download SOF file to the FPGA board using JTAG interface. Figure 3-1 The general design flow of building a design # 3.3 Using System Builder This section provides the detail procedures on how the System Builder is used. #### **■** Install and launch the System Builder The System Builder is located in the directory: "**Tools\SystemBuilder**" in the System CD. Users can copy the whole folder to a host computer without installing the utility. Before using the System Builder, execute the **SystemBuilder.exe** on the host computer as appears in **Figure 3-2**. Figure 3-2 The System Builder window #### ■ Select Board Type and Input Project Name Select the target board type (TR5_A7 or TR5_AB) and input project name as show in Figure 3-3. #### ■ Project Name: Specify the project name as it is automatically assigned to the name of the top-level design entity. Figure 3-3 The Quartus Project Name #### **■** System Configuration Under System Configuration users are given the flexibility of enabling their choice of components on the FPGA as shown in **Figure 3-4**. Each component of the FPGA board is listed where users can enable or disable a component according to their design by simply marking a check or removing the check in the field provided. If the component is enabled, the System Builder will automatically generate the associated pin assignments including the pin name, pin location, pin direction, and I/O standards. **Note**: The pin assignments for some components (e.g. DDR3 and SATA) require associated controller codes in the Quartus project otherwise Quartus will result in compilation errors. Therefore, do not select them if they are not necessary in your design. To use the DDR3 controller, please refer to the DDR3 SDRAM demonstration in Chapter 6. Figure 3-4 System Configuration Group ## **■** Programmable PLL There are two external plls on-board that provide reference clocks for the following signals: - FMCA_ONBOARD_REFCLK - FMCD_ONBOARD_REFCLK - PCIE_ONBOARD_REFCLK - DDR3_REFCLK - SATA_DEVICE_REFCLK - SATA_HOST_REFCLK - FMCB_ONBOARD_REFCLK - FMCC_ONBOARD_REFCLK To use these clocks, users can select the desired frequency on the Programmable Oscillator group, as shown in **Figure 3-5**. FMC, DDR3, PCIe or SATA must be checked before users can start to specify the desired frequency in the programmable oscillators. As the Quartus project is created, the System Builder automatically generates the associated controller according to users' desired frequency in Verilog which facilitates users' implementation as no additional control code is required to configure the programmable oscillator. **Note:** If users need to dynamically change the frequency, they would need to modify the generated control code themselves. Figure 3-5 External Programmable PLLs ## **■** Project Setting Management The System Builder also provides functions to restore default setting, loading a setting, and saving users' board configuration(s) file, as shown in **Figure 3-6**. Users can save the current board configuration information into a .cfg file and load it to the System Builder. Figure 3-6 Project Settings ## **■** Project Generation When users press the **Generate** button, the System Builder will generate the
corresponding Quartus II files and documents as listed in the **Table 3-1** in the directory specified by the user. Table 3-1 The files generated by System Builder | No. | Filename | Description | |-----|-------------------------------|---------------------------------------| | 1 | <project name="">.v</project> | Top level Verilog file for Quartus II | | 2 | CDCM6208_controller (*) | CDCM6208 External PLL controller IP | | 3 | LMK04096B_controller(*) | LMK04096B External PLL controller IP | |---|---------------------------------|---| | 4 | <project name="">.qpf</project> | Quartus II Project File | | 5 | <project name="">.qsf</project> | Quartus II Setting File | | 6 | <project name="">.sdc</project> | Synopsis Design Constraints file for Quartus II | | 7 | <project name="">.htm</project> | Pin Assignment Document | - (*) The CDCM6208_controller is a folder which contains the verilog files for CDCM6208 configuration. - (*) The LMK04096B_controller is a folder which contains the verilog files for LMK04096B configuration. Users can use Quartus II software to add custom logic into the project and compile the project to generate the SRAM Object File (.sof). For CDCM6208, the Controller will be instantiated in the Quartus II top-level file as listed below: ``` // External PLL CDCM6208 Configuration =========== // Signal declarations `define CDCM6208_MODE_0 2'd0 `define CDCM6208_MODE_1 2'd1 //FMCA(100), FMCD(100), PCIE(100), SATA_HOST(150), SATA_DEVICE(150), DDR3(133.333) //FMCA(125), FMCD(125), PCIE(100), SATA_HOST(150), SATA_DEVICE(150), DDR3(133.333) `define CDCM6208_MODE_2 2'd2 //FMCA(150), FMCD(150), PCIE(100), SATA_HOST(150), SATA_DEVICE(150), DDR3(133.333) `define CDCM6208_FMCA_DISABLE_BIT 6'b000001 `define CDCM6208_FMCD_DISABLE_BIT `define CDCM6208_SATA_HOST_DISABLE_BIT `define CDCM6208_SATA_DEVICE_DISABLE_BIT 6'b000010 6'b000100 6'b010000 `define CDCM6208_PCIE_DISABLE_BIT `define CDCM6208_DDR3_DISABLE_BIT 6'b100000 [1:0] cdcm6208_freq_select; [5:0] cdcm6208_freq_disable; wire wire cdcm6208_reset_n; cdcm6208_i2c_done; wire // Structural coding assign cdcm6208_reset_n = CPU_RESET_n; assign cdcm6208_freq_select = `CDCM6208_MODE_1; assign cdcm6208_freq_disable = 6'b0000000; I2C_CDCM6208_Config I2C_CDCM6208_Config_inst(.iCLK(OSC_50_B3B), //50MHZ .iRST_N(cdcm6208_reset_n), .iFREQ_SELECT(cdcm6208_freq_select) .iFREQ_DISABLE(cdcm6208_freq_disable), // i2c .12C_SCLK(CLOCK_SCL), . I2C_SDAT (CLOCK_SDA) .I2C_DONE(cdcm6208_i2c_done)); ``` For LMK04096B, the Controller will be instantiated in the Quartus II top-level file as listed below: ``` // External PLL LMK04906 Configuration ========= // Signal declarations `define FMCA_644M53125_BIT 4'h8 //644.53125 MHz `define FMCB 644M53125 BIT 4'h2 //644.53125 MHz `define FMCC 644M53125 BIT 4'h1 //644.53125 MHz `define FMCD_644M53125_BIT 4'h4 //644.53125 MHz wire [3:0] lmk04906 freq select; wire lmk04906 reset n; lmk04906_spi_done; wire // Structural coding assign lmk04906_reset_n = CPU_RESET_n; assign lmk04906_freq_select = `FMCA_644M53125_BIT; SPI_LMK04906_Config SPI_LMK04906_Config_inst(.clk50(OSC_50_B4A), //50MHZ .rst_n(lmk04906_reset_n), .iFREQ_SELECT(lmk04906_freq_select), // spi .LMK04906 CLK (LMK04906 CLK), .LMK04906 DATAIN(LMK04906 DATAIN), .LMK04906_LE(LMK04906_LE), .SPI_DONE(lmk04906_spi_done)); ``` If dynamic configuration for the oscillator is required, users need to modify the code according to users' desired behavior. # Chapter 4 # Flash Programming As you develop your own project using the Altera tools, you can program the flash memory device so that your own design loads from flash memory into the FPGA on power up. This chapter will describe how to use Altera Quartus II Programmer Tool to program the common flash interface (CFI) flash memory device on the FPGA board. The Stratix V X GX FPGA development board ships with the CFI flash device preprogrammed with a default factory FPGA configuration for running the Parallel Flash Loader design example. ## 4.1 CFI Flash Memory Map _Table 4-1 shows the default memory contents of a 1Gb (128MB) CFI flash device. The flash device has a 16-bit data bus. For the factory default code to run correctly and update designs in the user memory, this memory map must not be altered. **Table 4-1 Flash Memory Map (Byte Address)** | Block Description | Size(KB) | Address Range | |------------------------|----------|-------------------------| | PFL option bits | 64 | 0x00030000 - 0x0003FFFF | | Factory hardware | 41984 | 0x00040000 - 0x0293FFFF | | User hardware | 41984 | 0x02940000 - 0x0523FFFF | | Factory software | 23424 | 0x05240000 - 0x0691FFFF | | User software and data | 23424 | 0x06920000 - 0x07FFFFFF | For user application, user hardware can be stored with start address **0x02940000**, and the user's software is suggested to be stored with start address **0x06920000**. The **QuartusII Programmer** is used for programming the flash. Before programming, users need to bundle their .sof files and NIOS II .elf files together and then convert them into the .pof file which is used by the **Convert** **Programming File** tool. Before Bundle, user should translate the .*elf* to .hex at first with NIOS II EDS tool and **nios2-elf-objcopy** tool. For convenience, the System CD contains a batch file for file translation and flash programming with users given .*sof* and .*elf* files. ## **4.2 FPGA Configure Operation** Here is the procedure to enable FPGA configuration from Flash: - 1. Please make sure the FPGA configuration data has been stored in the CFI flash. - 2. Set the FPGA configuration mode to FPPx16 mode by setting **SW5** MSEL[0:4] as 00000 as shown in **Figure 4-1**. - 3. Specify the configuration of the FPGA using the default Factory Configuration or User Configuration by setting **SW4** according to **Figure 4-2**. - 4. Power on the FPGA board or press MAX_RST button if board is already powered on - 5. When configuration is completed, the green Configure Done LED **D21** will light. If there is error, the red Configure Error LED **D23** will light. Figure 4-1 MSEL[0:4] set to "00000" **Figure 4-2 Configuration Image Selection** # 4.3 Flash Programming with Users Design Users can program the flash memory device so that a custom design loads from flash memory into the FPGA on power up. For convenience, the translation and programming batch files are available on the Demonstrations/flash_programming/flash_programming_batch folder in the System CD. There folder contains five files as shown in _Table 4-2 Table 4-2 Content of flash_programming_batch folder | Files Name | Description | | | |-------------------|---|--|--| | TR5_PFL.sof | Parallel Flash Loader Configuration File | | | | flash_program.bat | Top batch file to generate and download the .pof file | | | | build_hex.sh | Translate .elf into .hex file | | | | output_file.cof | input file for convert | | | | program_flash.cdf | Input file for download | | | | factory.sof | Factory Hardware design file for Hello Demo | | | | factory.elf | Factory Software design file for Hello Demo | | | | user.sof | User Hardware design file | | | | User.elf | User Software design file | |----------|---------------------------| To apply the batch file to users' .sof and .elf file, users can change the .sof filename in the **output_file.cof** file and .elf filename in the **build_hex.sh** as shown in _**Figure 4-3**. ``` 16 <sof_data>↓ 17 <start_address>02940000</start_address>↓ 18 <end_address>0523FFFF</end_address>↓ 19 <user_name>Page_1</user_name>↓ 20 <page_f1ags>2</page_f1ags>↓ 21 <bit0>↓ 22 ⟨sof filename⟩user.sof Vsof filename⟩ 23 </bit0>↓ </sof_data>↓ # convert to hax as war image+ "$39PC_KIT_MI052/nios2_command_shell.sh" elf2f1ash --base=0x00000000 --end=0x07FFFFFF --reset=0x0 "$39PC_KIT_MI052/nios2_command_shell.sh" nios2-elf-objcopy -I srec -0 ihex user.flash user.hex+ end=0x07FFFFFF --reset=0x06920000 --input=user.elf -output=user.flash --boot=$SOPC_KIT_NIOS2/components/altera_nios2/boot_loader_cfi.srec ``` Figure 4-3 Change to usrs' .sof and .elf filename If your design does not contain a NIOS II processor, users can change the content "Child_OpMask(6 1 0 1 1 0 0)" to "Child_OpMask(6 1 0 1 0 0 0)" of program_flash.cdf file as shown in Figure 4-4. ``` /* Quartus II 64-Bit Version 15.0.0 Build 145 04/22/2015 Patches 0.32 SJ Full Version */↓ JedecChain; ↓ DefaultMfr(6E); ↓ ↓ P ActionCode(Cfg) ↓ Device PartName(5SGXEA7N2F45) Path("") File("TR5_PFL.sof") MfrSpec(OpMask(1) SEC_Device(CFI_1GB) Child_OpMask(6 1 0 1 1 0 0) PFLPath("output_file.pof")); ↓ ChainEnd; ↓ AlteraBegin; ↓ ChainType(JTAG); ↓ AlteraEnd; ↓ ``` Figure 4-4 Disable .elf translation and programming If your design includes a NIOS II processor and the NIOS II program is stored on external memory, users must to perform following items so the NIOS II program can be boot from flash successfully: 1. QSYS should include a Flash controller for the CFI Flash on the development board. Please ensure that the base address of the controller is 0x00, as shown in **Figure 4-5**. 2. In NIOS II processor options, select FLASH as reset vector memory and specify 0x06920000 as reset vector, as shown in **Figure 4-6**. Figure 4-5 Flash Controller Settings in QSYS Figure 4-6 Reset Vector Settings for NIOS II Processor For implementation detail, users can refer the Hello example located in the CD folder: Demonstrations/ Hello # **4.4 Restore Factory Settings** This section describes how to restore the original factory contents to the flash memory device on the FPGA development board. Perform the following instructions: - 1. Make sure the Nios II EDS and USB-Blaster II driver are installed. - 2. Make sure the FPGA board and PC are connected with a UBS Cable. - 3. Power on the FPGA board. - 4. Copy the "Demonstrations/flash_programming/factory_programming_batch" folder under the CD to your PC's local drive. - 5. Execute the batch file
flash_program.bat to start flash programming. - 6. Power off the FPGA Board. - 7. Set FPGA configure mode as FPPx16 Mode by setting SW5 MSEL[0:4] to 00000. - 8. Specify configuration of the FPGA to Factory Hardware by setting the FACTORY_LOAD dip in SW4 to the '0' position. - 9. Power on the FPGA Board, and the Configure Done LED should light. Except for programming the Flash with the default code PFL, the batch file also writes PFL (Parallel Flash Loader) Option Bits data into the address 0x30000. The option bits data specifies 0x2940000 as start address of your hardware design. The Quartus II program tool **quartus_pgm** programs the Flash based on the Parallel Flasher Loader design in the FPGA. ## Chapter 5 # Programmable PLL This chapter introduces TR5 peripheral interface reference designs. It mainly introduces CDCM6208 and LMK04096B chips which are programmable clock generators. We provide two ways (Pure RTL IP and NIOS/Qsys System) respectively to show how to control CDCM6208 and LMK04096B to output desired frequencies. The source codes and tool of these examples are all available on the System CD. # 5.1 Configure CDCM6208 and LMK04096B in RTL There are two clock generators: CDCM6208 and LMK04096B on TR5 FPGA board can provide adjustable frequency reference clock (See **Figure 5-1**) for FMC, SATA, DDR3 and PCIE interfaces, etc. The CDCM6208 clock generator can output six differential frequencies from 100Hz ~ 800Mhz though I2C interface configuration. The LMK04096B clock generator can output four differential frequencies from 100Hz ~ 2600Mhz though SPI interface configuration. This section will show you how to use FPGA RTL IP to configure the PLLs and generate users desired output frequency to each peripheral. Figure 5-1 Programmable PLL Block diagram #### **■** Creating CDCM6208 Control IP System Builder tool (locate in System CD) can be used to help users to set CDCM6208 and LMK04096B to output desired frequencies, and generate a Quartus project with control IP. In System Builder window, when checking the boxes of FMC, SATA, DDR3 and PCIE interfaces, CDCM6208 and LMK04096B corresponding output channels will become available. For example, when select "CDCM6208 PLL" and "LMK0496B PLL" (See **Figure 5-2**), all the clock channels controlled by the CDCM6208 and LMK0496B will be active and numbers of the frequencies can be chosen. Figure 5-2 Enable CDCM6208 clock on System Builder ``` // External PLL CDCM6208 Configuration===== // Signal declarations `define CDCM6208_MODE_0 2'd0 `defineCDCM6208_MODE_1 2'd1 `define CDCM6208_MODE_2 2'd2 `define CDCM6208_FMCA_DISABLE_BIT 6'b000001 define CDCM6208_FMCD_DISABLE_BIT 6'b000010 define CDCM6208_SATA_HOST_DISABLE_BIT 6'b000100 `define CDCM6208_SATA_DEVICE_DISABLE_BIT 6'b001000 `define CDCM6208_PCIE_DISABLE_BIT 6'b010000 `define CDCM6208_DDR3_DISABLE_BIT 6'b100000 cdcm6208_freq_select; wire [1:0] cdcm6208_freq_disable; [5:0] wire cdcm6208_reset_n, cdcm6208_i2c_done; // Structural coding assign cdcm6208_reset_n = CPU_RESET_n; assign cdcm6208_freq_select = `CDCM6208_MODE_0; cdcm6208_freq_disable assign `CDCM6208_FMCA_DISABLE_BIT `CDCM6208 FMCD DISABLE BIT `CDCM6208_SATA_HOST_DISABLE_BIT `CDCM6208_SATA_DEVICE_DISABLE_BIT `CDCM6208_PCIE_DISABLE_BIT `CDCM6208_DDR3_DISABLE_BIT; I2C_CDCM6208_Config I2C_CDCM6208_Config_inst(.iCLK(OSC_50_B3B), //50MHZ .iRST_N(cdcm6208_reset_n), .iFREQ_SELECT(cdcm6208_freq_select), .iFREQ_DISABLE(cdcm6208_freq_disable), // i2c .I2C_SCLK(CLOCK_SCL), .I2C_SDAT(CLOCK_SDA), .I2C_DONE(cdcm6208_i2c_done)); ``` ``` // External PLL LMK04906 Configuration===== // Signal declarations `define FMCA_644M53125_BIT 4'h8 //644.53125 MHz `define FMCB 644M53125 BIT 4'h2 //644.53125 MHz define FMCC_644M53125_BIT 4'h1 //644.53125 MHz `define FMCD_644M53125_BIT 4'h4 //644.53125 MHz wire [3:0] lmk04906_freq_select; wire lmk04906_reset_n; lmk04906_spi_done; wire // Structural coding assign lmk04906_reset_n = CPU_RESET_n; assign lmk04906_freq_select = 4'b0000; SPI_LMK04906_Config SPI_LMK04906_Config_inst(.clk50(OSC_50_B4A), //50MHZ .rst_n(lmk04906_reset_n), .iFREQ_SELECT(lmk04906_freq_select), // spi .LMK04906_CLK(LMK04906_CLK), .LMK04906_DATAIN(LMK04906_DATAIN), .LMK04906_LE(LMK04906_LE), .SPI_DONE(lmk04906_spi_done) ```); When user finish the clock setting, click "Generate" button, then, open the Quartus Project generated by the System Builder, the control IPs for CDCM6208 and LMK04096B can be found in the top level file. If the output frequency doesn't need to be modified, users can just add their own User Logic and compile it, then the CDCM6208 and LMK04096B can output the desired frequencies. At the same time, System Builder will set Clock constrain according user's preset frequency in a SDC file (as shown in Figure 5-3). Figure 5-3 SDC file created by System Builder ## ■ Using CDCM6208 control IP Table 5-1 lists the instruction ports of CDCM6208 Controller IP. Port Direction Description iCLK input System Clock (50Mhz) Synchronous Reset (0: Module Reset, 1: iRST n input Normal) **iFREQ DISABLE** Disable the CDCM6208 output frequency input Setting CDCM6208 Output Channel Frequency iFREQ_SELECT input combination mode Table 5-1 CDCM6208 Controller Instruction Ports | I2C_DONE | output | CDCM6208 Configuration status (0:
Configuration in Progress, 1: Configuration
Complete) | |----------|--------|--| | I2C_DATA | inout | I2C Serial Data to/from CDCM6208 | | I2C_CLK | output | I2C Serial Clock to CDCM6208 | As shown in Table 5-2, the CDCM6208 control IPs have preset three output frequency combinations, if users want to change frequency, users can fill in the input port " iFREQ_SELEC" with a desired Frequency combination mode and recompile the project. For example, in CDCM6208 control IP, change ``` assign cdcm6208_freq_select = `CDCM6208_MODE_0; to assign cdcm6208_freq_select = `CDCM6208_MODE_1; ``` Recompile project, the CDCM6208 output frequency combination will change from mode 0 to 1. **iFREQ_SELECT FMCA** SATA_DEVICE DDR3 **FMCD** PCIE SATA_HOST Freq(MHz) Freq(MHz) Freq(MHz) **MODE Setting** Freq(MHz) Freq(MHz) 2'b00 100 100 100 150 150 133.333 150 150 133.333 2'b01 125 125 100 2'b10 150 150 100 150 150 133.333 Table 5-2 CDCM6208 Controller Frequency Setting Users can also dynamically modify the input parameters, and input a positive edge trigger for "iRST_N", and then the CDCM6208 output frequency can be modified. After manually modifying, please remember to modify the corresponding frequency value in SDC file. ## ■ Modify Clock Parameter For Your Own Frequency If the CDCM6208 control IP build-in frequencies are not the users' desired frequencies, users can refer to the below steps to modify control the IP register parameter settings to modify the IP to output a desired frequency. 1. Firstly, download ClockBuider Pro Software(See Figure 5-4), which is provided by TI. This tool can help users to set the CDCM6208's output frequency of each channel through the GUI interface, and it will automatically calculate the Register parameters required for each frequency. The tool download link: http://www.ti.com/lit/sw/scac134d/scac134d.zip Figure 5-4 ClockBuilder Pro Wizard 2. After the installation, select CDCM6208, and configure the input frequency and output frequency as shown in **Figure 5-5**. Figure 5-5 Define Output Clock Frequencies on CDCM6208 EVM Software 3. After the setting is completed, CDCM6208 EVM Software generates a register table, which contains users setting frequency corresponding register value (See **Figure 5-6**). Figure 5-6 Open Register Table on CDCM6208 EVM Software 4. Open CDCM6208 control IP sub-module "I2C_CDCM6208_Config.v" as shown in **Figure 5-7**, refer to Register Table to modify all the sub-module corresponding register values (See **Figure 5-8**). Figure 5-7 Sub-Module file "I2C_CDCM6208_Config.v" Figure 5-8 Modify CDCM6208 Control IP Base on Register Table After modifying and compiling, CDCM6208 can output new frequencies according to the users' setting. #### Note: - (1) No need to modify all Design Report parameters in I2C_CDCM6208_Config.v, users can ignore parameters which have nothing to do with the frequency setting. - (2) After manually modifying, please remember to modify the clock constrain setting in .SDC file. #### ■ Using LMK04096B control IP Table 5-3 lists the instruction ports of LMK04096B Controller IP. #### Table 5-3 LMK04096B Controller Instruction Ports | Port | Direction | Description | |-----------------|-----------|--| | clk50 | input | System Clock (50Mhz) | | rst_n | input | Synchronous Reset (0: Module Reset, 1: Normal) | | iFREQ_SELECT | input | Setting LMK04096B Output Channel Frequency combination mode | | SPI_DONE | output | LMK04096B Configuration status (0: Configuration in Progress, 1: Configuration Complete) | | LMK04906_CLK | output | SPI Clock to LMK04096B | | LMK04906_DATAIN | output | SPI Data to CDCM6208 | | LMK04906_LE | output | SPI Latch Enable | As shown in Table 5-4, the LMK04096B control IP has preset three output frequency combinations, if users want to change frequencies, users can fill in the input port "iFREQ_SELEC" with a desired Frequency combination mode and recompile the project. For example, in LMK04096B control IP, change assign lmk04906_freq_select = `FMCC_644M53125_BIT; to assign lmk04906_freq_select = `FMCC_644M53125_BIT | `FMCD_644M53125_BIT; Recompile project, the LMK04096B output frequency combination will change from mode 1 to 5. Table 5-4 LMK04096B Controller Frequency Setting | iFREQ_SELECT | FMCA | FMCD | FMCB | FMCC | |--------------|------------|------------|------------|------------| | MODE Setting | Freq(MHz) | Freq(MHz) | Freq(MHz) | Freq(MHz) | | 4'd0 | 322.265625 | 322.265625 | 322.265625 | 322.265625 | | 4'd1 | 322.265625 | 322.265625 | 322.265625 | 644.53125 | | 4'd2 |
322.265625 | 322.265625 | 644.53125 | 322.265625 | | 4'd3 | 322.265625 | 322.265625 | 644.53125 | 644.53125 | | 4'd4 | 322.265625 | 644.53125 | 322.265625 | 322.265625 | | 4'd5 | 322.265625 | 644.53125 | 322.265625 | 644.53125 | | 4'd6 | 322.265625 | 644.53125 | 644.53125 | 322.265625 | | 4'd7 | 322.265625 | 644.53125 | 644.53125 | 644.53125 | | 4'd8 | 644.53125 | 322.265625 | 322.265625 | 322.265625 | | 4'd9 | 644.53125 | 322.265625 | 322.265625 | 644.53125 | | 4'd10 | 644.53125 | 322.265625 | 644.53125 | 322.265625 | | 4'd11 | 644.53125 | 322.265625 | 644.53125 | 644.53125 | |-------|-----------|------------|------------|------------| | 4'd12 | 644.53125 | 644.53125 | 322.265625 | 322.265625 | | 4'd13 | 644.53125 | 644.53125 | 322.265625 | 644.53125 | | 4'd14 | 644.53125 | 644.53125 | 644.53125 | 322.265625 | | 4'd15 | 644.53125 | 644.53125 | 644.53125 | 644.53125 | Users can also dynamically modify the input parameters, and input a positive edge trigger for "**rst_n**", then, LMK04096B output frequency can be modified. After the manually modifying, please remember to modify the corresponding frequency value in SDC file. #### ■ Modify Clock Parameter For Your Own Frequency If the LMK04096B control IP build-in frequencies are not the users' desired, users can refer to the below steps to modify control IP register parameter settings to modify the IP to output a desired frequency. 5. Firstly, download "CodeLoader" Software(See **Figure 5-9**), which is provided by TI. This tool can help users to set the LMK04096B's output frequency of each channel through the GUI interface, and it will automatically calculate the Register parameters required for each frequency. The tool download link: $\underline{http://www.ti.com/tool/codeloader?keyMatch=CodeLoader\&tisearch=Search-EN-Everything}$ Figure 5-9 Codeloader 6. After the installation, select LMK04096B, and configure the input frequency and the output frequency as shown in **Figure 5-10**. Figure 5-10 Define Output Clock Frequencies on Codeloader 7. After the setting is completed, CodeLoader generates a Register Table, which contains users setting frequency corresponding register values (See Figure 5-11). Figure 5-11 Open Register Table on Codeloder 8. Open LMK04096B control IP sub-module "SPI_LMK04906_Config.v" as shown in **Figure 5-12**, refer Design Report parameter to modify all the sub-module corresponding register values (See **Figure 5-13**). Figure 5-12 Sub-Module file " SPI_LMK04906_Config.v" ``` Registers map // for FMCA/B/C/D 644.53125MHz always begin case(lut index) 0 : lut_data15 <= 33'h1_000061A8;//bit32 high for trigger delay 1 : lut_data15 <= 33'h0_80160200; 2 : lut_data15 <= 33'h1_000061A8; Hex Value lut_data15 <= 33'h0_20140080; RO (INIT) 0x8016 0200 4 : lut_data15 <= 33'h1_000061A8; RO 0x2014 0080 5: lut_data15 <= 33'h0_10140081; R1 0x1014 0081 6 : lut_data15 <= 33'h0_A0140082; R2 0xA014 0082 lut_data15 <= 33'h0_00140083; R3 0x1014 0083 8 : lut_data15 <= 33'h0_00140084; R4 0x1014 0084 lut_data15 <= 33'h0_80140C85; R5 0x8014 0C85 10 : lut_data15 <= 33'h0_01140006;</pre> R6 0x0114 0006 11 : lut_data15 <= 33'h0_01110007; 12 : lut_data15 <= 33'h0_00010008; R7 0x0111 0007 R8 0x0001 0008 4 : lut data15 <= 33'h0 9002410A: BA 0x9002 410A 15: lut_data15 <- 33'N0_3401100B; 16: lut_data15 <= 33'N0_130C006C; 17: lut_data15 <= 33'N0_3B02820D; 18: lut_data15 <= 33'N0_0200000E; HB 0x3401 100B BC 0x1300 0060 BD 0x3B02 820D BE 0×0200 000E 19 : lut_data15 <= 33'h0_8000800F; BE 0x8000 800E 20 : lut_data15 <= 33'h0_C1550410; R10 0xC155 0410 21 : lut_data15 <= 33'h0_000000D8; 22 : lut_data15 <= 33'h0_02C9C419; R18 0x0000 00D8 R19 0x02C9 C419 23 : lut_data15 <= 33'h0_8FA8001A; R1A 0x8FA8 001A 24 : lut_data15 <= 33'h0_10000F3B; R1B 0x1000 0F3B 25 : lut_data15 <= 33'h0_0080031C; 26 : lut_data15 <= 33'h0_0800227D; R1C 0x0080 031C R1D 0x0080 227D 27 : lut_data15 <= 33'h0_0300227E; 28 : lut_data15 <= 33'h0_001F001F; R1E 0x0300 227E R1F 0x001F 001F 29: lut_data15 <= 33'h1_000061A8; default : lut_data15 <= 33'h1_00000000; endcase ``` Figure 5-13 Modify LMK04096B Control IP Based on the Design Report After modifying and compiling, LMK04096B can output new frequencies according to the users' settings. #### Note: - (1) No need to modify all Design Report parameters in SPI_LMK04906_Config.v, users can ignore parameters which have nothing to do with the frequency setting - (2) After the manually modifying, please remember to modify clock constrain setting in .SDC file. ## **5.2 Nios II control for PLL/Temperature/Power** This demonstration shows how to use the Nios II processor to program two programmable oscillators (CDCM6208 and LMK04096B) on the FPGA board, how to measure the power consumption based on the built-in power measure circuit. The demonstration also includes a function of monitoring system temperature with the on-board temperature sensor. #### System Block Diagram **Figure 5-14** shows the system block diagram of this demonstration. The system requires a 50 MHz clock provided from the board. The three peripherals (including temperature sensor, CDCM6208 and INA230) are all controlled by the Nios II through the PIO controller, the I2C pins from chip are connected to Qsys System Interconnect Fabric through the PIO controllers, and all of them are programmed through the I2C protocol which is implemented in the C code. The LMK04096B is controlled by the Nios II through the SPI controller. The Nios II program is running in the on-chip memory. Figure 5-14 Block diagram of the Nios II Basic Demonstration The program provides a menu in the nios-terminal, as shown in **Figure 5-15** to provide an interactive interface. With the menu, users can perform the test for the temperatures sensor, external PLL and power monitor. Note, pressing 'ENTER' should be followed with the choosing of a number. ``` Altera Nios II EDS 16.0 [gcc4] ====== TR5 Demo Program ====== [0] Temperature [1] Power_Monitor [2] CDCM6208 [3] LMK04906 Input your chioce: ``` Figure 5-15 Menu of Demo Program In temperature test, the program will display the local temperature and the remote temperature. The remote temperature is the FPGA temperature, and the local temperature is the board temperature where the temperature sensor located (or at the temperature sensors location). A power monitor IC (INA230AIRGTT) embedded on the board can monitor TR5 real-time current and power. This IC can work out current/power value as multiplier and divider are embedded in it. There is a shunt resistor R35 (RSHUNT =0.003 Ω) for INA230AIRGTT in the circuit, when the TR5 board is powered on, there will be a voltage drop (named Shut Voltage) on R35. Based on sense resistors, the program of the power monitor can calculate the associated voltage, current and power consumption from the IN230 through the I2C interface. Please note the device I2C address is 0x80. In the external PLL programming test, the program will program the PLL first, and subsequently it will use the CLOCK_COUNTER IP to count the clock count in a specified period to check whether the output frequency is changed as configured. To avoid a Quartus II compilation error, dummy transceiver controllers are created to receive the clock from the external PLL. Users can ignore the functionality of the transceiver controller in the demonstration. For CDCM6208 programming, Please note the device I2C address is 0xA8. The program can control the CDCM6208 to configure the output frequency of FMCA/FMCD/DDR3/PCIE/SATA REFCLK according to your choice. For LMK04096B programming, the program can control the LMK04096B to configure the output frequency of the FMCA/FMCB/FMCC/FMCD REFCLK to 644.53125MHz. #### ■ Demonstration File Locations - Hardware project directory: NIOS_BASIC_DEMO - Bitstream used: NIOS_BASIC_DEMO.sof - Software project directory: NIOS_BASIC_DEMO \software - Demo batch file : NIOS_BASIC_DEMO\demo_batch\NIOS_BASIC_DEMO.bat, NIOS_BASIC_DEMO.sh #### Demonstration Setup and Instructions - Make sure Quartus II and Nios II are installed on your PC. - Power on the FPGA board. - Use the USB Cable to connect your PC and the FPGA board and install USB Blaster II driver if necessary. - Execute the demo batch file "NIOS_BASIC_DEMO.bat" under the batch file folder, NIOS_BASIC_DEMO\demo_batch. - After the Nios II program is downloaded and executed successfully, a prompt message will be - displayed in nios2-terminal. - For temperature test, please input key '0' and press 'Enter' in the nios-terminal, , as shown in **Figure 5-16**. - For power monitor test, please input key '1' and press 'Enter' in the nios-terminal, the Nios II console will display the current values of voltage, current and power as shown in **Figure 5-17**. - For programmable PLL CDCM6208 test, please input key '2' and press 'Enter' in the niosterminal first, then select the desired output frequency of FMCA/FMCD/DDR3/PCIE/SATA, as shown in **Figure 5-18**. - For programmable PLL LMK04906 test, please input key '3' and press 'Enter' in the niosterminal, as shown in **Figure 5-19**. ``` _ 0 \Sigma S Altera Nios II EDS 16.0 [gcc4] ==== TR5 Demo Program ====== [0] Temperature [1] Power_Monitor [2] CDCM6208 [3] LMK04906 Input your chioce:0 Local Temperature:32 Remote Temperature:33 Temperature Test:PASS ===== TR5 Demo Program ====== [0] Temperature [1] Power_Monitor [2] CDCM6208 [3] LMKØ49Ø6 Input your chioce: ``` Figure 5-16 Temperature Demo ``` _ 0 \Sigma S Altera Nios II EDS 16.0 [gcc4] ===== TR5 Demo Program ====== [0] Temperature [1] Power_Monitor [2] CDCM6208 [3] LMK04906 Input your chioce:1 Configuration ok! === Power Monitor Test ==== Shunt_Voltage = 3.100 mV Bus_Voltage = 12.195 U Current = 1.043 A = 12.550 W Power Power_Monitor Test:PASS ===== TR5 Demo Program ====== [0] Temperature [1] Power_Monitor [2] CDCM6208 [3] LMKØ49Ø6 Input your chioce: ``` Figure 5-17 power monitor Demo ``` _ 0 \Sigma S Altera Nios II EDS 16.0 [gcc4] [0] Temperature [1] Power_Monitor [2] CDCM6208 [3] LMKØ49Ø6 Input your
chioce:2 ===== CDCM6208 Programming ===== LFMCA_ONBOARD_REFCLK1:[0]0.00 MHz [1]100.00 MHz [2]125.00 MHz [3]150.000 MHz [FMCD_ONBOARD_REFCLK]:[0]0.00 MHz [1]100.00 MHz [2]125.00 MHz [3]150.000 MHz [PCIE_ONBOARD_REFCLK]:[0]0.00 MHz [1]100.000 MHz [SATA_DEVICE_REFCLK]:[0]0.00 MHz [1]150.000 MHz [SATA_HOST_REFCLK 1:[0]0.00 MHz [1]150.000 MHz]:[0]0.00 MHz [1]133.333 MHz [DDR3_REFCLK please select FMCA_ONBOARD_REFCLK:1 please select FMCD_ONBOARD_REFCLK:1 please select PCIE_ONBOARD_REFCLK:1 please select SATA_DEVICE_REFCLK :1 please select SATA_HOST_REFCLK :1 please select DDR3_REFCLK CDCM6208 REG Write success READ CDCM6208... reg[0]-reg[20] read and verify success!! FMCA_ONBOARD_REFCLK0: 100.000 MHz FMCD_ONBOARD_REFCLK0: 100.000 MHz PCIE ONBOARD REFCLK: 100.000 MHz SATA_DEVICE_REFCLK: 150.000 MHz SATA_HOST_REFCLK: 150.000 MHz DDR3_REFCLK: 133.333 MHz DDR3/133.332993MHz ref clock test PASS (clk1=99998, clk2=266665, expected clk2=2 PCIE/100.000000MHz ref clock test PASS (clk1=99998, clk2=199999, expected clk2=1 99996) FMCA/100.000000MHz ref clock 0 test PASS (clk1=99998, clk2=199998, expected clk2 =199996) FMCD/100.000000MHz ref clock 0 test PASS (clk1=99998, clk2=199999, expected clk2 =199996) SATA DEVICE/150.000000MHz ref clock test PASS (clk1=99998, clk2=299997, expected c1k2=299994) SATA HOST/150.000000MHz ref clock test PASS (clk1=99998, clk2=299998, expected c 1k2=299994) CDCM6208 Test:PASS ===== TR5 Demo Program ====== [0] Temperature [1] Power_Monitor [2] CDCM6208 [3] LMKØ49Ø6 Input your chioce: ``` Figure 5-18 CDCM6208 Demo Figure 5-19 LMK04906 Demo # Chapter 6 # Examples of Advanced Demonstration This chapter introduces several advanced designs that demonstrate Stratix V GX features using the TR5 board. The provided designs include the major features on the board; such as the DDR3, fan control and USB to Uart interface. For each demonstration the Stratix V GX FPGA configuration file is provided, as well as full source code in Verilog HDL. All of the associated files can be found in the demonstrations folder from the TR5 System CD. #### **6.1 Flash and SSRAM Test** In this demonstration hardware and software designs are provided to illustration how to perform Flash and SSRAM memory access in QSYS. #### **■** Function Block Diagram **Figure 6-1** shows the System block diagram of this demonstration. The QSYS system requires one 50MHz clock source. There are two Generic Tristate Controllers in this demonstration. One Generic Tri-state Controller is configured as a 1Gb Flash controller and another one is configured as 16Mb SSRAM controller. The Tristate Conduit Pin Sharer multiplexes between the signals of the two connected tri-state controllers. Nios II processor is used to perform memory test. The Nios II program is running on the On-Chip memory. Figure 6-1 Function Block Diagram of the Flash and SSRAM Test The system flow is controlled by a Nios II program. For Flash test, the Nios II program erases the whole block at first. The Nios II program writes test words into the whole size of SSRAM and Flash at first. Then, it calls Nios II system function $alt_dcache_flush_all()$ to make sure that all data has been written to SSRAM and Flash. Finally, it reads back all data from SSRAM and Flash for data verification. The program will show the progress in JTAG-Terminal when writing or reading data from or to SSRAM and Flash. When verification is completed, the result is displayed in the JTAG-Terminal. #### **Design Tools** - Quartus II 16.0 - Nios II Eclipse 16.0 #### **Demonstration Source Code** - Quartus II project directory: TR5_Flash_SSRAM - Nios II Eclipse: TR5_Flash_SSRAM\software #### **Nios Project Compilation** Before you attempt to compile the reference design under Nios II Eclipse, make sure the project is cleaned first by clicking "Clean" from the "Project" menu of Nios II Eclipse. #### **Demonstration Batch File** Demo Batch File Folder: TR5_Flash_SSRAM\demo_batch The demo batch file includes following files: - Batch file for USB-Blaster II: test.bat, test.sh - FPGA configure file: TR5_Flash_SSRAM.sof - Nios II program: mem_test.elf #### **Demonstration Setup** Please follow below procedures to setup the demonstrations. - Make sure Quartus II and Nios II are installed on your PC. - Power on the FPGA board. - Use the USB Cable to connect the PC and the FPGA board and install the USB Blaster II driver if necessary. - Execute the demo batch file "test.bat" under the folder TR5 Flash SSRAM\demo_batch. - After the Nios II program is downloaded and executed successfully, a prompt message will be displayed in the nios2-terminal. - The program will display progressing and resulting information, as shown in **Figure 6-2**. Figure 6-2 Display progress and result information for the flash and SSRAM test demo #### **6.2 DDR3 SDRAM Test** This demonstration performs a memory test function for two DDR3-SDRAM SO-DIMMs by RTL code on the TR5. The memory size of each DDR3 SDRAM SO-DIMM used in this test is 2 GB. #### **■** Function Block Diagram **Figure 6-3** shows the function block diagram of this demonstration. There are two DDR3 SDRAM controllers. The controller uses 50 MHz as a reference clock. It generates one 800MHz clock as memory clock from the FPGA to the memory and the controller itself runs at quarter-rate in the FPGA i.e. 200MHz. Figure 6-3 Block diagram of DDR3 SDRAM (2GB) demonstration #### ■ Altera DDR3 SDRAM Controller with UniPHY To use Altera DDR3 controller, please perform the three major steps below: - 1. Create correct pin assignments for DDR3. - 2. Setup correct parameters in the dialog of DDR3 controller. - 3. Go to the Quartus II menu and select Process→Start→Start Analysis & Synthesis to perform "Analysis and Synthesis". - 4. Go to the Quartus II menu and select Tools -> TCL Scripts ... to run the TCL files generated by the DDR3 IP. #### **■** Design Tools • 64-bit Quartus II v16.0 #### **■** Demonstration Source Code Project Directory: Demonstration\DDR3_Test • Bit Stream: DDR3_Test.sof #### **■** Demonstration Batch File Demo Batch File Folder: DDR3_Test \demo_batch • The demo batch file includes following files: Batch File: DDR3_Test.bat • FPGA Configuration File: DDR3_Test.sof #### Demonstration Setup Make sure Quartus II is installed on the host PC. - Connect the TR5 board to the host PC via the USB cable. Install the USB-Blaster II driver if necessary. - Install the DDR3 SODDIM and Power on the TR5 board. - Execute the demo batch file "DDR3_Test.bat" under the batch file folder \DDR3_Test\demo_batch. - Press BUTTON0 on TR5 to start the verification process. When BUTTON0 is pressed, all LEDs (LED [3:0]) should light. At the instant of releasing BUTTON0, LED1, LED2, and LED3 should start blinking. After approximately 2 seconds, LED1 should stop blinking and stay on to indicate the DDR3 have passed the test, respectively. **Table 6-1** lists the LED indicators. - If LED2 or LED3 is not blinking, it means the 50MHz clock source is not working. - If LED1 does not start blinking upon releasing BUTTON0, it indicates "local_cal_success" of the DDR3 fails. - If LED1 fails to remain on after 2 seconds, the corresponding DDR3 test has failed. - Press BUTTON0 again to regenerate the test control signals for a repeat test. • Table 6-1 LED Indicators | NAME | Description | |------|--------------------| | LED0 | Reset | | LED1 | DDR3 test result | | LED2 | 50MHz clock source | | LED3 | 50MHz clock source | # **6.3 DDR3 SDRAM Test by Nios II** Many applications use a high performance RAM, such as a DDR3 SDRAM, to provide temporary storage. In this demonstration hardware and software designs are provided to illustrate how to perform DDR3 memory access in QSYS. We describe how Altera's "DDR3 SDRAM Controller with UniPHY" IP is used to access the DDR3-Sodimm on the FPGA board, and how the Nios II processor is used to read and write the SDRAM for hardware verification. The DDR3 SDRAM controller handles the complex aspects of using DDR3 SDRAM by initializing the memory devices, managing the SDRAM banks, and keeping the devices refreshed at appropriate intervals. #### System Block Diagram **Figure 6-4** shows the system block diagram of this demonstration. The QSYS system requires one 50 MHz clock source provided from the board. The DDR3 controller is configured as a 2 GB DDR3-800Mhz controller. The DDR3 IP generates one 800 MHz clock as SDRAM's data clock and one quarter-rate system clock 800/4=200 MHz for those host controllers, e.g. Nios II processor, accessing the SDRAM. In the QSYS, Nios II and the On-Chip memory are designed running with the 200 MHz clock, and the Nios II program is running in the on-chip memory. A PIO Controller is used to monitor buttons status which is used to trigger starting memory testing. Figure 6-4 Block diagram of the DDR3 Basic Demonstration The system flow is controlled by an Nios II program. First, the Nios II program writes test patterns into the whole 2 GB of SDRAM. Then, it calls Nios II system function, alt_dache_flush_all, to make sure all data has been written to SDRAM. Finally, it reads data from SDRAM for data verification. The program will show progress in JTAG-Terminal when writing/reading data to/from the SDRAM. When verification process is completed, the result is displayed in the JTAG-Terminal. #### ■ Altera DDR3 SDRAM Controller with UniPHY To use the Altera DDR3 controller, users need to perform three major steps: - 1. Create correct pin assignments for the DDR3. - 2. Setup correct parameters in the DDR3 controller dialog. - 3. Perform "Analysis and Synthesis" by selecting from the Quartus II menu: Process → Start → Start Analysis & Synthesis. - 4. Run the TCL files generated by DDR3 IP by selecting from the Quartus II menu: Tools→TCL Scripts... #### **■** Design Tools - Quartus II 16.0 - Nios II Eclipse 16.0 #### **■** Demonstration Source Code - Quartus Project directory: DDR3_Nios - Nios II Eclipse: DDR3_Nios\software - Nios II Project Compilation ####
■ Nios II Project Compilation Before you attempt to compile the reference design under Nios II Eclipse, make sure the project is cleaned first by clicking 'Clean' from the 'Project' menu of Nios II Eclipse. #### **■** Demonstration Batch File Demo Batch File Folder: DDR3_Nios\demo_batch The demo batch file includes following files: - Batch File for USB-Blaseter II: test.bat, test.sh - FPGA Configure File: DDR3_Nios.sof - Nios II Program: DDR3_Nios.elf #### **■** Demonstration Setup Please follow the below procedures to setup the demonstration. - Make sure Quartus II and Nios II are installed on your PC. - Make sure the DDR3 SODIMMs are installed on the FPGA board. - Power on the FPGA board. - Use the USB Cable to connect PC and the FPGA board and install USB Blaster II driver if necessary. - Execute the demo batch file "test.bat" under the folder "DDR3_Nios\demo_batch". - After Nios II program is downloaded and executed successfully, a prompt message will be displayed in nios2-terminal. - Press Button3~Button0 of the FPGA board to start DDR3 SDRAM verify process. Press Button0 for continued test. - The program will display progressing and result information, as shown in **Figure 6-5**. ``` _ 0 X Altera Nios II EDS 16.0 [gcc4] Using cable "DE5 [USB-1]", device 1, instance 0x00 Resetting and pausing target processor: OK Initializing CPU cache (if present) Downloaded 72KB in 0.1s Verified OK Starting processor at address 0x00000244 nios2-terminal: connected to hardware target using JTAG UART on cable nios2-terminal: "DE5 [USB-1]", device 1, instance 0 nios2-terminal: (Use the IDE stop button or Ctrl-C to terminate) ==== DDR3 Test! Size=1024MB (CPU Clock:200000000)===== Press any BUTTON to start test [BUTTONO for continued test] ====> DDR3 Testing, Iteration: 1 write.. 10x 20x 30x 40x 50x 60x 70x 80x 90x 100x read/verify... 10x 20x 30x 40x 50x 60x 70x 80x 90x 100x DDR3 test:Pass, 72 seconds Press any BUTTON to start test [BUTTONØ for continued test] ``` Figure 6-5 Display Progress and Result Information for the DDR3 Demonstration ### **6.4 Fan Speed Control** This demo helps users quickly understand how to set the MAX6650 chip from the FPGA to control the fan sink. The MAX6650 chip can set or retrieve the RPM of the fan sink. It can also monitor if there is any unexpected error and determine which type of error it is. The following section will save lots of time for the development of user application. #### System Block Diagram Figure 6-6 shows the system block diagram of this demo. It is necessary to configure the MAX6650 chip prior upon the initialization of fan sink control. The MAX6650 chip uses standard I2C protocol for communication. The functions I2C_Config and I2C_Bus_Controller set and monitor the RPM of the fan sink, respectively. A pre-scaler is used as frequency divider for the clock frequency of I2C. Users need to calculate the frequency based on the equations from the datasheet to control the RPM of the fan sink. There are three equations in the datasheet and this demo uses one of them. For other equations, please refer to the datasheet MAX6650-MAX6651.pdf in the system CD. The SW0 (Switch 0) controls the RPM in this demo. When the SW0 is set to 0, the speed is around 2000 RPM. The speed would reach about 5000 RPM if the SW0 is set to 1. It would take $10 \sim 30$ secs as the buffer time for the conversion. If an error is detected, the LED would light. Users need to press Button1 to reset the LED to turn it off. Figure 6-6 Block diagram of the fan speed control demonstration #### ■ Alarm Status Register Bit Assignments When the fan is abnormal, the LED will light. Users can refer to Table 6-2 and get a better understanding about the malfunction of the fan sink accordingly. The status of BIT $4 \sim 7$ can be ignored because BIT 4 is for MAX6651 only and BIT $5 \sim 7$ are always low. Table 6-2 Alarm-Enable Resgister Bit Masks | BIT | NAME | POR(DEFAULT)
STATE | FUNCTION | |-------------|------------------------|-----------------------|--| | 7(MSB) to 5 | | 0 | Always 0 | | 4 | GPIO2(MAX6651
only) | 0 | GPIO2 Alarm.
Set when GPIO2
is low (MAX6651
only) | | 3(LED[3]) | GPIO1 | 0 | GPIO1 Alarm.
Set when GPIO1
is low | | 2(LED[2]) | TACH | 0 | Tachometer
Overflow Alarm | | 1(LED[1]) | MIN | 0 | Minimum Output
Level Alarm | | 0(LED[0]) | MAX | 0 | Maximum
Output Level
Alarm | #### **■** Design Tools • 64-bit Quartus II v16.0 #### **■** Demonstration Source Code • Project Directory: Demonstration/Fan • Bit Stream: Golden_Top.sof #### **■** Demonstration Batch File • Demo Batch File Folder: \Fan\demo_batch • The demo batch file includes following files: • Batch File: test.bat • FPGA Configure File: Golden_Top.sof #### **■** Demonstration Setup Make sure Quartus II is installed on the host PC. • Connect the TR5 and the host PC via the USB cable. Install the USB-Blaster II driver if necessary. - Power on the FPGA Board. - Execute the demo batch file "test.bat" under the batch file folder \Fan\demo_batch. - When SW0 is set to 0, the RPM would slowly be adjusted to ~2000. When SW0 is set to 1, the RPM would slowly be adjusted to ~5000. #### 6.5 UART to USB Control Many applications need communication with the computer through the common port. The traditional connector is RS232 which needs to connect to a RS232 cable. But today many personal computers don't have the RS232 connector which makes it very inconvenient to develop projects. The TR5 board is designed to support UART communication through a USB cable. The UART to USB circuit is responsible for converting the data format. Developers can use a USB cable rather than an RS232 cable to enable the communication between the FPGA and the host computer. In this demonstration we will show you how to control the LEDs by sending a command on the computer putty terminal. The command is sent and received through a USB cable to the FPGA. Note that in FPGA, the information was received and sent through a UART IP. **Figure 6-7** shows the hardware block diagram of this demonstration. The system requires a 50 MHz clock provided from the board. The PLL generates a 100MHz clock for Nios II processor and the controller IP. The LEDs are controlled by the PIO IP. The UART controller sends and receives command data and the command is sent through Putty terminal on the computer. Figure 6-7 Block diagram of UART Control LED demonstration #### **■** Design Tools - Quartus II 16.0 - Nios II Eclipse 16.0 #### **■** Demonstration Source Code - Quartus Project directory: uart_control - Nios II Eclipse: uart_control\software #### ■ Nios II Project Compilation • Before you attempt to compile the reference design under Nios II Eclipse, make sure the project is cleaned first by clicking 'Clean' from the 'Project' menu of Nios II Eclipse. #### **■** Demonstration Batch File • Demo Batch File Folder: uart_control\demo_batch • The demo batch file includes following files: ■ Batch File for USB-Blaster: test.bat, test.sh ■ FPGA Configure File : uart_control.sof ■ Nios II Program: *uart_led*.elf #### ■ Demonstration Setup - Connect a USB cable between your computer and the USB connector (J5) on the TR5 board. - Power on your TR5 board, if you find an unrecognized USB Serial Port in Device Manager as shown in **Figure 6-8**. you should install the UART to the USB driver before you run the demonstration. Figure 6-8 Unrecognized USB Serial Port on PC - To install UART_TO_USB driver on your computer please select the USB Serial Port to update the driver software. The driver file can be downloaded from the following website: http://www.ftdichip.com/Drivers/VCP.htm. - Open the Device Manager to ensure which common port is assigned to the UART to USB port as shown in **Figure 6-9**. The common number 9 (COM9) is assigned on this computer. Figure 6-9 Check the assigned Com Port number On PC • Open the putty software, type in the parameter as shown in **Figure 6-10** and click open button to open the terminal.(Here is a link for you to download the putty terminal: <u>Download Putty</u>) Figure 6-10 putty terminal setup - Make sure Quartus II and Nios II are installed on your PC. - Connect USB Blaster to the TR5 board (J6) and install USB Blaster driver if necessary. - Execute the demo batch file "test.bat" under the batch file folder uart_control\demo_batch. - The Nios II-terminal and putty terminal running result as shown in **Figure 6-11**. Figure 6-11 Running result of uart_usb demo • In the putty terminal, type character to change the LED state. Type a digital number to toggle the LED [4..0] state and type a/A or n/N to turn on/off all LED. # Chapter 7 # PCI Express Reference Design PCI Express is commonly used in consumer, server, and industrial applications, to link motherboard-mounted peripherals. From this demonstration, it will show how the PC and FPGA communicate with each other through the PCI Express interface. V-Series Avalon-MM DMA for PCI Express IP is used in this demonstration. For detail about this IP, please refer to Altera document: ug pcie avmm dma.pdf. # 7.1 PCI Express System Infrastructure **Figure 7-1** shows the infrastructure of the PCI Express System in this demonstration. It consists of two primary components: FPGA System and PC System. The FPGA System is developed based on V-Series Avalon-MM DMA for PCI Express. The application software on the PC side is developed by Terasic based on Altera's PCIe kernel mode driver. Figure 7-1 PCI Express System Infrastructure # 7.2 PC PCI Express Software SDK The FPGA System CD contains a PC Windows based SDK to allow users to develop their 64-bits software application on Windows XP/7/10 64-bits. The SDK is located in the "CDROM \demonstrations\PCIe_SW_KIT" folder which includes: - PCI Express Driver - PCI Express Library - PCI Express Examples The kernel mode driver assumes the PCIe vender ID
(VID) is 0x1172 and the device ID (DID) is 0xE003. If different VID and DID are used in the design, users need to modify the PCIe vender ID (VID) and device ID (DID) in the driver INF file accordingly. The PCI Express Library is implemented as a single DLL called TERASIC_PCIE_AVMM.DLL. This file is a 64-bits DLL. With the DLL exported to the software API, users can easily communicate with the FPGA. The library provides the following functions: - Basic Data Read and Write - Data Read and Write by DMA For high performance data transmission, DMA is required as the read and write operations are specified under the hardware design on the FPGA. #### **■** PCI Express Software Stack **Figure 7-8** shows the software stack for the PCI Express application software on 64-bit Windows. The PCI Express driver incorporated in the DLL library is called TERASIC_PCIE_AVMM.dll. Users can develop their applications based on this DLL. The altera_pcie_win_driver.sys kernel driver is provided by Altera. Figure 7-2 PCI Express Software Stack #### **■** Install PCI Express Driver on Windows The PCIe driver is located in the folder: "CDROM\Demonstrations\PCIe_SW_KIT\PCIe_Driver" The folder includes the following four files: - Altera_pcie_win_driver.cat - Altera_pcie_win_driver.inf - Altera_pcie_win_driver.sys - WdfCoinstaller01011.dll To install the PCI Express driver, execute the steps below: - 1. Make sure the TR5 and the PC are both powered off. - 2. Plug the PCIe adapter card into the PCIe slot on the PC motherboard. Use the PCIe cable to connect to the TR5 PCIE connector and the PCIe adapter card (See Figure 7-3) Figure 7-3 FPGA board connect to PC - 3. Power on your TR5 board and the host PC - 4. Make sure Altera Programmer and USB-Blaster II driver are installed - 5. Execute test.bat in "CDROM\Demonstrations\PCIe_Fundamental\demo_batch" to configure the FPGA - 6. Restart windows operation system - 7. Click the Control Panel menu from the Windows Start menu. Click the Hardware and the Sound item before clicking the Device Manager to launch the Device Manager dialog. There will be a PCI Device item in the dialog, as shown in **Figure** 7-4. Move the mouse cursor to the PCI Device item and right click it to select the Update Driver Software... item. Figure 7-4 Screenshot of launching Update Driver Software dialog 8. In the **How do you want to search for driver software** dialog, click **Browse my computer for driver software** item, as shown in **Figure 7-5**. Click "OK" and then "Exit" to close the installation program. Figure 7-5 Dialog of Browse my computer for driver software 9. In the **Browse for driver software on your computer** dialog, click the **Browse** button to specify the folder where altera_pcie_din_driver.inf is located, as shown in **Figure 7-6** Click the **Next** button. Figure 7-6 Browse for driver software on your computer 10. When the **Windows Security** dialog appears, as shown Figure 7-7, click the **Install** button. Figure 7-7 Click Install in the dialog of Windows Security 11. When the driver is installed successfully, the successfully dialog will appears, as shown in Figure 7-8. Click the **Close** button. Figure 7-8 Click Close when the installation of Altera PCI API Driver is complete 12. Once the driver is successfully installed, users can see the **Altera PCI API Driver** under the device manager window, as shown in **Figure 7-9**. Figure 7-9 Altera PCI API Driver in Device Manager ### **■** Create a Software Application All necessary files to create a PCIe software application are located in the *CDROM\demonstration\PCIe_SW_KIT\PCIe_Library* which includes the following files: - TERASIC_PCIE_AVMM.h - TERASIC_PCIE_AVMM.DLL (64-bit DLL) Below lists the procedures to use the SDK files in users' C/C++ project : - Create a 64-bit C/C++ project. - Include TERASIC_PCIE_AVMM.h in the C/C++ project. - Copy TERASIC_PCIE_AVMM.DLL to the folder where the project.exe is located. - Dynamically load TERASIC_PCIE_AVMM.DLL in C/C++ program. To load the DLL, please refer to the PCIe fundamental example below. - Call the SDK API to implement the desired application. ### TERASIC_PCIE.DLL/TERASIC_PCIEx64.DLL Software API Users can easily communicate with the FPGA through the PCIe bus through the TERASIC_PCIE_AVMM.DLL API. The details of API are described below: ### ■ PCIE_Open ### **Function:** Open a specified PCIe card with vendor ID, device ID, and matched card index. ### **Prototype:** PCIE_HANDLE PCIE_Open(WORD wVendorID, WORD wDeviceID, WORD wCardIndex); #### **Parameters:** wVendorID: Specify the desired vendor ID. A zero value means to ignore the vendor ID. wDeviceID: Specify the desired device ID. A zero value means to ignore the device ID. wCardIndex: Specify the matched card index, a zero based index, based on the matched verder ID and device ID. #### Return Value: Return a handle to presents specified PCIe card. A positive value is return if the PCIe card is opened successfully. A value zero means failed to connect the target PCIe card. This handle value is used as a parameter for other functions, e.g. PCIE_Read32. Users need to call PCIE_Close to release handle once the handle is no more used. ### ■ PCIE Close #### **Function:** Close a handle associated to the PCIe card. TR5 User Manual ### **Prototype:** void PCIE_Close(PCIE_HANDLE hPCIE); #### Parameters: hPCIE: A PCIe handle return by PCIE_Open function. ### Return Value: None. ### ■ PCIE Read32 ### **Function:** Read a 32-bit data from the FPGA board. ### **Prototype:** bool PCIE_Read32(PCIE_HANDLE hPCIE, PCIE_BAR PcieBar, PCIE_ADDRESS PcieAddress, DWORD * pdwData); #### **Parameters:** hPCIE: A PCIe handle return by PCIE_Open function. PcieBar: Specify the target BAR. PcieAddress: Specify the target address in FPGA. pdwData: A buffer to retrieve the 32-bit data. #### Return Value: Return TRUE if read data is successful; otherwise FALSE is returned. ### ■ PCIE_Write32 #### **Function:** Write a 32-bit data to the FPGA Board. ### **Prototype:** bool PCIE_Write32(PCIE_HANDLE hPCIE, PCIE_BAR PcieBar, PCIE_ADDRESS PcieAddress, TR5 User Manual DWORD dwData); ### Parameters: hPCIE: A PCIe handle return by PCIE_Open function. PcieBar: Specify the target BAR. PcieAddress: Specify the target address in FPGA. dwData: Specify a 32-bit data which will be written to FPGA board. ### Return Value: Return TRUE if write data is successful; otherwise FALSE is returned. ### ■ PCIE DmaRead ### Function: Read data from the memory-mapped memory of FPGA board in DMA. ### **Prototype:** bool PCIE DmaRead(PCIE_HANDLE hPCIE, PCIE_LOCAL_ADDRESS LocalAddress, void *pBuffer, DWORD dwBufSize); ### Parameters: hPCIE: A PCIe handle return by PCIE_Open function. LocalAddress: Specify the target memory-mapped address in FPGA. pBuffer: A pointer to a memory buffer to retrieved the data from FPGA. The size of buffer should be equal or larger the dwBufSize. dwBufSize: Specify the byte number of data retrieved from FPGA. ### Return Value: Return TRUE if read data is successful; otherwise FALSE is returned. ### ■ PCIE_DmaWrite ### **Function:** Write data to the memory-mapped memory of FPGA board in DMA. ### **Prototype:** ``` bool PCIE_DmaWrite(PCIE_HANDLE hPCIE, PCIE_LOCAL_ADDRESS LocalAddress, void *pData, DWORD dwDataSize ``` ### Parameters: hPCIE: A PCIe handle return by PCIE_Open function. LocalAddress: Specify the target memory mapped address in FPGA. pData: A pointer to a memory buffer to store the data which will be written to FPGA. dwDataSize: Specify the byte number of data which will be written to FPGA. #### Return Value: Return TRUE if write data is successful; otherwise FALSE is returned. ### ■ PCIE_ConfigRead32 ### **Function:** Read PCIe Configuration Table. Read a 32-bit data by given a byte offset. ### **Prototype:** ``` bool PCIE_ConfigRead32 (PCIE_HANDLE hPCIE, DWORD Offset, DWORD *pdwData); ``` TR5 User Manual ### Parameters: hPCIE: A PCIe handle return by PCIE_Open function. Offset: Specify the target byte of offset in PCIe configuration table. pdwData: A 4-bytes buffer to retrieve the 32-bit data. #### Return Value: Return TRUE if read data is successful; otherwise FALSE is returned. ## 7.3 Reference Design - Fundamental The application reference design shows how to implement fundamental control and data transfer in DMA. In the design, basic I/O is used to control the BUTTON and LED on the FPGA board. High-speed data transfer is performed by DMA. ### **■** Demonstration Files Location - The demo file is located in the batch folder: - CDROM\demonstrations\PCIe_funcdamental\Demo_batch - The folder includes following files: - FPGA Configuration File: PCIe_funcdamental.sof - Download Batch file: test.bat - Windows Application Software folder : windows_app, includes - ◆ PCIE_FUNDAMENTAL.exe - ◆ TERASIC_PCIE_AVMM.dll ### **■** Demonstration Setup 1. Use the PCIe cable to connect to the TR5 PCIE connector and PCIe adapter card as shown in **Figure 7-10.** Figure 7-10 FPGA board connect to PC - 2. Configure FPGA with PCIE_Fundamental.sof by executing the test.bat. - 3. Install PCIe driver if necessary. The driver is located in the folder: CDROM\Demonstration \PCIe_SW_KIT\PCIe_Driver. - 4. Restart Windows - 5. Make sure the Windows has detected the FPGA Board by checking the Windows Control panel as shown in **Figure 7-11**. Figure 7-11 Screenshot for PCIe Driver 6. Goto windows_app folder, execute PCIE_FUNDMENTAL.exe. A menu will appear as shown in Figure 7-12. Figure 7-12 Screenshot of Program Menu 7. Type 0 followed by a ENTER key to select Led Control item, then input 15 (hex 0x0f) will make all led on as shown in **Figure 7-13**. If input 0(hex 0x00), all led will be turned off. Figure 7-13 Screenshot of LED Control 8. Type 1 followed by an ENTER key to select Button Status Read item. The button status will be report as shown in Figure 7-14. ``` C:\Users\Administrator\Desktop\PCIe_Fundamental\demo_batch\windows_app\PCIE_FUN... \Sigma S Terasic: PCIe Demo
Program == E [0]: Led control [1]: Button Status Read [2]: DMA Memory Test [99]: Quit Plesae input your selection:0 Please input led conrol mask:15 Led control success, mask=fh ----- [0]: Led control [1]: Button Status Read [2]: DMA Memory Test [99]: Quit Plesae input your selection:1 Button status mask:=0h [0]: Led control [1]: Button Status Read [2]: DMA Memory Test [99]: Quit Plesae input your selection: ``` Figure 7-14 Screenshot of Button Status Report 9. Type-2 followed by an ENTER key to select DMA Testing item. The DMA test result will be report as shown in Figure 7-15. Figure 7-15 Screenshot of DMA Memory Test Result 10. Type 99 followed by an ENTER key to exit this test program ### **■ Development Tools** - Quartus II 16.0 - Visual C++ 2012 ### **■** Demonstration Source Code Location - Quartus Project: Demonstrations\PCIE_Fundamental - Visual C++ Project: Demonstrations\PCIe_SW_KIT\PCIE_FUNDAMENTAL ### **■** FPGA Application Design **Figure 7-16** shows the system block diagram in the FPGA system. In the Qsys, Altera PIO controller is used to control the LED and monitor the Button Status, and the On-Chip memory is used for performing DMA testing. The PIO controllers and the On-Chip memory are connected to the PCI Express Hard IP controller through the Memory-Mapped Interface. Figure 7-16 Hardware block diagram of the PCle reference design ### ■ Windows Based Application Software Design TR5 User Manual The application software project is built by Visual C++ 2012. The project includes the following major files: | Name | Description | |------|-------------| | | | | PCIE_FUNDAMENTAL.cpp | Main program | |----------------------|---| | PCIE.c | Implement dynamically load for | | PCIE.h | TERAISC_PCIE_AVMM.DLL | | TERASIC_PCIE_AVMM.h | SDK library file, defines constant and data structure | The main program PCIE_FUNDAMENTAL.cpp includes the header file "PCIE.h" and defines the controller address according to the FPGA design. ``` #define DEMO_PCIE_USER_BAR PCIE_BAR4 #define DEMO_PCIE_IO_LED_ADDR 0x4000010 #define DEMO_PCIE_IO_BUTTON_ADDR 0x4000020 #define DEMO_PCIE_MEM_ADDR 0x00000000 #define MEM_SIZE (512*1024) //512KB ``` The base address of BUTTON and LED controllers are 0x4000010 and 0x4000020 based on PCIE_BAR4, respectively. The on-chip memory base address is 0x000000000 relative to the DMA controller. Before accessing the FPGA through PCI Express, the application first calls PCIE_Load to dynamically load the TERASIC_PCIE_AVMM.DLL. Then, it calls the PCIE_Open to open the PCI Express driver. The constant DEFAULT_PCIE_VID and DEFAULT_PCIE_DID used in PCIE_Open are defined in TERASIC_PCIE_AVMM.h. If developer changes the Vender ID, the Device ID, and the PCI Express IP, they also need to change the ID value defined in TERASIC_PCIE_AVMM.h. If the return value of the PCIE_Open is zero, it means the driver cannot be accessed successfully. In this case, please make sure: - The FPGA is configured with the associated bit-stream file and the host is rebooted. - The PCI express driver is loaded successfully. The LED control is implemented by calling PCIE_Write32 API, as shown below: ``` bPass = PCIE_Write32(hPCIe, DEMO_PCIE_USER_BAR, DEMO_PCIE_IO_LED_ADDR,(DWORD)Mask); ``` The button status query is implemented by calling the **PCIE_Read32** API, as shown below: ``` PCIE_Read32(hPCIe, DEMO_PCIE_USER_BAR, DEMO_PCIE_IO_BUTTON_ADDR,&Status); ``` The memory-mapped memory read and write test is implemented by **PCIE_DmaWrite** and **PCIE_DmaRead** API, as shown below: ``` PCIE_DmaWrite(hPCIe, LocalAddr, pWrite, nTestSize); PCIE_DmaRead(hPCIe, LocalAddr, pRead, nTestSize); ``` # 7.4 PCIe Reference Design – DDR3 The application reference design shows how to add DDR3 Memory Controllers into the PCIe Quartus project based on the PCI_Fundamental Quartus project and perform 2GB data DMA for both SODIMM. Also, this demo shows how to call "PCIE_ConfigRead32" API to check PCIe link status. ### **■ Demonstration Files Location** - The demo file is located in the batch folder: - CDROM\demonstrations\PCIe_DDR3\Demo_batch - The folder includes following files: - FPGA Configuration File: PCIe_DDR3.sof - Download Batch file: test.bat - Windows Application Software folder : windows_app, includes - ◆ PCIE_DDR3.exe - ◆ TERASIC_PCIE_AVMM.dll ### **■** Demonstration Setup - 1. Install both DDR3 1600 2GB SODIMM on the FPGA board. - 2. Install the FPGA board on your PC. - 3. Configure FPGA with PCIE_DDR3.sof by executing the test.bat. - 4. Install PCIe driver if necessary. - 5. Restart Windows - 6. Make sure the Windows has detected the FPGA Board by checking the Windows Control panel. - 7. Goto windows_app folder, execute PCIE_DDR3.exe. A menu will appear as shown in **Figure** 7-17. Figure 7-17 Screenshot of Program Menu 8. Type 2 followed by the ENTER key to select Link Info item. The PICe link information will be shown as in **Figure 7-18**. Gen2 link speed and x4 link width are expected. ``` _ 0 \Sigma S C:\Users\Administrator\Desktop\PCIE_DDR3\demo_batch\windows_app\PCIE_DDR3.exe Terasic: PCIe Demo Program = Ε [0]: Led control [1]: Button Status Read [2]: Link Info [3]: DMA On-Chip Memory Test [4]: DMA DDR3 Sodimm Memory Test [99]: Quit Plesae input your selection:2 Vender ID:1172h Device ID:E003h Current Link Speed is Gen2 Negotiated Link Width is x4 Maximum Payload Size is 256-byte [0]: Led control [1]: Button Status Read [2]: Link Info [3]: DMA On-Chip Memory Test [4]: DMA DDR3 Sodimm Memory Test [99]: Quit Plesae input your selection: ``` Figure 7-18 Screenshot of Link Info 9. Type 3 followed by the ENTER key to select DMA On-Chip Memory Test item. The DMA write and read test result will be reported as shown in Figure 7-19. ``` 23 C:\Users\Administrator\Desktop\PCIE_DDR3\demo_batch\windows_app\PCIE_DDR3.exe Maximum Payload Size is 256-byte [0]: Led control [1]: Button Status Read [2]: Link Info [3]: DMA On-Chip Memory Test [4]: DMA DDR3 Sodimm Memory Test [99]: Quit Plesae input your selection:3 DMA Memory Test, size=524288dBytes... Generate Test Pattern... DMA Write... DMA Read... Readback Data Verify... DMA-Memory (Size = 524288d byes) pass [0]: Led control [1]: Button Status Read [2]: Link Info [3]: DMA On-Chip Memory Test [4]: DMA DDR3 Sodimm Memory Test [99]: Quit Plesae input your selection: ``` Figure 7-19 Screenshot of On-Chip Memory DMA Test Result 10. Type-4 followed by the ENTER key to select DMA DDR3 SODIMM Memory Test item. The DMA write and read test result will be report as shown in Figure 7-20. ``` _ 0 23 C:\Users\Administrator\Desktop\PCIE_DDR3\demo_batch\windows_app\PCIE_DDR3.exe DMA-Memory (Size = 524288d byes) pass [0]: Led control [1]: Button Status Read = [2]: Link Info [3]: DMA On-Chip Memory Test [4]: DMA DDR3 Sodimm Memory Test [99]: Quit Plesae input your selection:4 DMA Memory Test, size=2147483648dBytes... Generate Test Pattern... DMA Write... DMA Read... Readback Data Verify... DMA-Memory (Size = 2147483648d byes) pass [0]: Led control [1]: Button Status Read [2]: Link Info [3]: DMA On-Chip Memory Test [4]: DMA DDR3 Sodimm Memory Test [99]: Quit Plesae input your selection: ``` ### Figure 7-20 Screenshot of DDR3 SOSIMM Memory DAM Test Result 11. Type 99 followed by the ENTER key to exit this test program. ### Development Tools - Quartus II 16.0 - Visual C++ 2012 ### **■** Demonstration Source Code Location - Quartus Project: Demonstrations\PCIE_DDR3 - Visual C++ Project: Demonstrations\PCIe_SW_KIT\PCIe_DDR3 ### **■ FPGA Application Design** **Figure 7-21** shows the system block diagram in the FPGA system. In the Qsys, Altera PIO controller is used to control the LED and monitor the Button Status, and the On-Chip memory and DDR3 SOSIMM Memory are used for performing DMA testing. The PIO controllers the On-Chip memory and DDR3 SOSIMM Memory are connected to the PCI Express Hard IP controller through the Memory-Mapped Interface. Figure 7-21 Hardware block diagram of the PCle DDR3 reference design ### **■** Windows Based Application Software Design The application software project is built by Visual C++ 2012. The project includes the following major files: | Name | Description | |---------------------|---| | PCIE_DDR3.cpp | Main program | | PCIE.c | Implement dynamically load for | | PCIE.h | TERAISC_PCIE_AVMM.DLL | | TERASIC_PCIE_AVMM.h | SDK library file, defines constant and data structure | The main program PCIE_DDR3.cpp includes the header file "PCIE.h" and defines the controller address according to the FPGA design. ``` #define DEMO_PCIE_USER_BAR PCIE_BAR4 #define DEMO_PCIE_IO_LED_ADDR 0x4000010 #define DEMO_PCIE_IO_BUTTON_ADDR 0x4000020 #define DEMO_PCIE_ONCHIP_MEM_ADDR 0x00000000 #define DEMO_PCIE_DDR3_MEM_ADDR 0x1000000000 #define ONCHIP_MEM_TEST_SIZE (512*1024) //512KB #define DDR3_MEM_TEST_SIZE (2*1024*1024*1024) //2GB ``` The base address of BUTTON and LED controllers are 0x4000010 and 0x4000020 based on PCIE_BAR4, respectively. The on-chip memory base address is 0x000000000 relative to the DMA controller. The above definition is the same as those in the PCIe Fundamental demo. Before accessing the FPGA through PCI Express, the application first calls PCIE_Load to dynamically load the TERASIC_PCIE_AVMM.DLL. Then, it calls PCIE_Open to open the PCI Express driver. The constant DEFAULT_PCIE_VID and DEFAULT_PCIE_DID used in PCIE_Open are defined in TERASIC_PCIE_AVMM.h. If the developer changes the Vender ID, Device ID, and PCI Express IP, they also need to change the ID value defined in TERASIC_PCIE_AVMM.h. If the return value of PCIE_Open is zero, it means the driver cannot be accessed successfully. In this case, please make sure: - The FPGA is configured with the associated bit-stream file and the host is rebooted. - The PCI express driver is loaded successfully. The LED control is implemented by calling PCIE_Write32 API, as shown below: ``` bPass = PCIE_Write32(hPCIe, DEMO_PCIE_USER_BAR,
DEMO_PCIE_IO_LED_ADDR,(DWORD)Mask); ``` The button status query is implemented by calling the **PCIE_Read32** API, as shown below: ``` PCIE_Read32(hPCIe, DEMO_PCIE_USER_BAR, DEMO_PCIE_IO_BUTTON_ADDR,&Status); ``` The memory-mapped memory read and write test is implemented by **PCIE_DmaWrite** and **PCIE_DmaRead** API, as shown below: ``` PCIE_DmaWrite(hPCIe, LocalAddr, pWrite, nTestSize); PCIE_DmaWrite(hPCIe, LocalAddr, pWrite, nTestSize); ``` The pcie link information is implemented by PCIE_ConfigRead32 API, as shown below: ``` // read config - link status if (PCIE_ConfigRead32(hPCIe, 0x90, &Data32)){ switch((Data32 >> 16) & 0x0F){ case 1: printf("Current Link Speed is Gen1\r\n"); break; case 2: printf("Current Link Speed is Gen2\r\n"); break: case 3: printf("Current Link Speed is Gen3\r\n"); break; default: printf("Current Link Speed is Unknown\r\n"); switch((Data32 >> 20) & 0x3F){ case 1: printf("Negotiated Link Width is x1\r\n"); break; case 2: printf("Negotiated Link Width is x2\r\n"); break; case 4: printf("Negotiated Link Width is x4\r\n"); break: case 8: printf("Negotiated Link Width is x8\r\n"); break; case 16: printf("Negotiated Link Width is x16\r\n"); break; default: printf("Negotiated Link Width is Unknown\r\n"); break; }else{ bPass = false; ``` # Chapter 8 # Transceiver Verification This chapter describes how to verify the FPGA transceivers for the SATA and FMC XCVRs by using the test code provided in the TR5 system CD. ### **8.1 Function of the Transceiver Test Code** The transceiver test code is used to verify the transceiver channels for the SATA and FMC XCVR ports through an external loopback method. The transceiver channels are verified with PRBS31 test pattern and with the data rates: - For 5SGXEA7N2F45C2 Device: 12.5 Gbps for FMC XCVRs and 6Gbps for SATA. - For 5SGXEABN3F45I3YY Device: **10.3125 Gbps for FMC XCVRs** and 6Gbps for SATA. ## **8.2 Function of the Transceiver Test Code** To enable an external loopback of transceiver channels, one of the following two fixtures are required: - SATA Cable, as shown in **Figure 8-1** (General SATA 3.0 cable) - FMC Loopback Card, as shown in Figure 8-2 Figure 8-1 SATA Cable Figure 8-2 SATA Cable Figure 8-3 shows the FPGA board with SATA Cable four FMC Loopback Cards installed. Figure 8-3 SATA Cable and Four FMC Loopback Card Installed # **8.1 Testing** The transceiver test code is available in the folder System CD\Tool\Transceiver_Test. Here are the procedures to perform transceiver channel test: - 1. Copy Transceiver_Test folder to your local disk. - 2. Ensure that the FPGA board is NOT powered on. - 3. Plug-in the FMC loopback Card. - Note: There is only one FMC loopback card in the Kit. - 4. Plug-in the SATA cable to loop SATA HOST and DEVICE connector - HOST TX-> DEVICE RX, DEVICE TX -> HOST RX - 5. Connect your FPGA board to your PC with a mini USB cable. - 6. Power on the FPGA board - 7. Execute 'test.bat" in the Transceiver_Test folder under your local disk. - 8. The batch file will download .sof and .elf files, and start the test immediately. The test result is shown in the Nios-Terminal, as shown in **Figure 8-4**. - 9. To terminate the test, press one of the BUTTON0~3 buttons on the FPGA board. The loopback test will terminate and show the summary test results as shown in **Figure 8-5**. ``` Downloaded 126KB in 0.1s Verified OK Starting processor at address 0x000401BC nios2-terminal: connected to hardware target using JTAG UART on cable nios2-terminal: "DES [USB-1]", device 1, instance 0 nios2-terminal: (Use the IDE stop button or Ctrl-C to terminate) Transceiver for FMC(12.5Gbps), SATA(6Gbps) Testing... Press buttons on the board can terminate the testing. Apply default settings ... done ===== Time Elapsed: 5 Seconds ==== SATA_BOST->PASS, XferCnt:3445553029 SATA_DEUICE->PASS, XferCnt:344753897 PMCA_XCUR_0->PASS, XferCnt:7009166812 PMCA_XCUR_1->PASS, XferCnt:700947772 PMCA_XCUR_1->PASS, XferCnt:63455420 PMCA_XCUR_3->PASS, XferCnt:668161820 PMCA_XCUR_3->PASS, XferCnt:668161820 PMCA_XCUR_4->PASS, XferCnt:665165020 PMCA_XCUR_7->PASS, XferCnt:651650220 PMCA_XCUR_8->PASS, XferCnt:635267820 PMCA_XCUR_9->PASS, XferCnt:635267820 PMCA_XCUR_9->PASS, XferCnt:635267820 PMCB_XCUR_0->PASS, XferCnt:618874620 PMCC_XCUR_0->PASS, XferCnt:618874620 PMCD_XCUR_0->PASS, XferCnt:5062401100 PMCD_XCUR_1->PASS, XferCnt:561656522 PMCD_XCUR_1->PASS, XferCnt:5860965522 PMCD_XCUR_1->PASS, XferCnt:5860965522 PMCD_XCUR_1->PASS, XferCnt:5560956220 XferCnt:55609560220 PMCD_XCUR_1->PASS, XferCnt:5560956220 PMCD_XCUR_1->PASS, X ``` Figure 8-4 Transceiver Loopback Test in Progress Figure 8-5 Transceiver Loopback Done # Chapter 9 # FMC Connectors Pin Out This chapter gives all the pin assignments of the FMC connectors on the TR5. Table 9-1 FMCA (HPC) Pin Assignments, Schematic Signal Names, and Functions | Schematic
Signal Name | Description | I/O Standard | Stratix V GX Pin
Number | |--------------------------|--------------------------------|---------------------------|----------------------------| | FMCA_LA_TX_CLK_p | FMCA LA bank tx clock positive | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_B16 | | FMCA_LA_TX_CLK_n | FMCA LA bank tx clock negative | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_A16 | | FMCA_LA_TX_p0 | FMCA LA bank tx data p0 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_R19 | | FMCA_LA_TX_n0 | FMCA LA bank tx data n0 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_R18 | | FMCA_LA_TX_p1 | FMCA LA bank tx
data p1 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_M23 | | FMCA_LA_TX_n1 | FMCA LA bank tx data n1 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_L24 | | FMCA_LA_TX_p2 | FMCA LA bank tx
data p2 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_W29 | | FMCA_LA_TX_n2 | FMCA LA bank tx data n2 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_V30 | | FMCA_LA_TX_p3 | FMCA LA bank tx data p3 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_K28 | | FMCA_LA_TX_n3 | FMCA LA bank tx data n3 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_J28 | | FMCA_LA_TX_p4 | FMCA LA bank tx
data p4 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_V27 | | FMCA_LA_TX_n4 | FMCA LA bank tx data n4 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_V26 | | FMCA_LA_TX_p5 | FMCA LA bank tx
data p5 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_H29 | | FMCA_LA_TX_n5 | FMCA LA bank tx | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_H28 | | | data n5 | | | |----------------|-----------------------------|---------------------------|---------| | FMCA_LA_TX_p6 | FMCA LA bank tx
data p6 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_P28 | | FMCA_LA_TX_n6 | FMCA LA bank tx
data n6 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_P29 | | FMCA_LA_TX_p7 | FMCA LA bank tx
data p7 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_G31 | | FMCA_LA_TX_n7 | FMCA LA bank tx
data n7 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_F31 | | FMCA_LA_TX_p8 | FMCA LA bank tx
data p8 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_N29 | | FMCA_LA_TX_n8 | FMCA LA bank tx
data n8 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_M30 | | FMCA_LA_TX_p9 | FMCA LA bank tx
data p9 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_E26 | | FMCA_LA_TX_n9 | FMCA LA bank tx
data n9 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_D26 | | FMCA_LA_TX_p10 | FMCA LA bank tx
data p10 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_C28 | | FMCA_LA_TX_n10 | FMCA LA bank tx
data n10 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_B28 | | FMCA_LA_TX_p11 | FMCA LA bank tx
data p11 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_P20 | | FMCA_LA_TX_n11 | FMCA LA bank tx
data n11 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_N20 | | FMCA_LA_TX_p12 | FMCA LA bank tx
data p12 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_F25 | | FMCA_LA_TX_n12 | FMCA LA bank tx
data n12 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_F24 | | FMCA_LA_TX_p13 | FMCA LA bank tx
data p13 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_L20 | | FMCA_LA_TX_n13 | FMCA LA bank tx
data n13 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_K19 | | FMCA_LA_TX_p14 | FMCA LA bank tx
data p14 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_E24 | | FMCA_LA_TX_n14 | FMCA LA bank tx
data n14 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_D24 | | FMCA_LA_TX_p15 | FMCA LA bank tx
data p15 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_E23 | | FMCA_LA_TX_n15 | FMCA LA bank tx data n15 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_D23 | | FMCA_LA_TX_p16 | FMCA LA bank tx | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_B19 | | | data p16 | | | |------------------|--------------------------------|----------------------------------|--------------| | | FMCA LA bank tx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_LA_TX_n16 | data n16 | 1.2/1.0/1.0/2.0/0.0 1/2100 | PIN_A19 | | EMCA LA DV CLV - | FMCA LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | DIN C4C | | FMCA_LA_RX_CLK_p | clock positive | | PIN_G16 | | FMCA_LA_RX_CLK_n | FMCA LA bank rx clock negative | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_F16 | | | FMCA LA bank rx | 4 0/4 5/4 0/0 5/0 0/// \/DO | | | FMCA_LA_RX_p0 | data p0 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_K30 | | FMCA_LA_RX_n0 | FMCA LA bank rx data n0 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN K29 | | FIVICA_LA_NA_IIU | | | FIIN_KZ3 | | FMCA_LA_RX_p1 | FMCA LA bank rx
data p1 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN V25 | | | FMCA LA bank rx | | 1 11 2 1 2 2 | | FMCA_LA_RX_n1 | data n1 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_U26 | | | FMCA LA bank rx | 4 0/4 5/4 0/0 5/2 0/// \/DC | | | FMCA_LA_RX_p2 | data p2 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_J30 | | | FMCA LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_LA_RX_n2 | data n2 | 1.2/1.3/1.0/2.3/3.0 4/2400 | PIN_H30 | | | FMCA LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_LA_RX_p3 | data p3 | 1.2/1.3/1.0/2.3/3.0 4/2400 | PIN_T28 | | | FMCA LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_LA_RX_n3 | data n3 | 1.2/1.3/1.0/2.3/3.0 4/2400 | PIN_R28 | | | FMCA LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_LA_RX_p4 | data p4 | 112, 110, 110, 210, 610 1, 210 0 | PIN_J27 | | | FMCA LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_LA_RX_n4 | data n4 | 1.2/1.0/1.0/2.0/0.0 4/2400 | PIN_H26 | | | FMCA LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_LA_RX_p5 | data p5 | 112, 110, 110, 210, 610 1, 210 0 | PIN_P26 | | | FMCA LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_LA_RX_n5 | data n5 | 112,110,110,210,010,1,212 | PIN_N26 | | | FMCA LA bank rx |
1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_LA_RX_p6 | data p6 | | PIN_U24 | | | FMCA LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_LA_RX_n6 | data n6 | | PIN_T24 | | | FMCA LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_LA_RX_p7 | data p7 | | PIN_T20 | | | FMCA LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_LA_RX_n7 | data n7 | | PIN_T19 | | | FMCA LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_LA_RX_p8 | data p8 | | PIN_C31 | | FMCA_LA_RX_n8 | FMCA LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_B31 | | | data n8 | | | |------------------|-------------------------|-----------------------------|----------| | | FMCA LA bank rx | | | | FMCA_LA_RX_p9 | data p9 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN A32 | | | FMCA LA bank rx | | | | FMCA_LA_RX_n9 | data n9 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN A31 | | | FMCA LA bank rx | | | | FMCA_LA_RX_p10 | data p10 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_H25 | | | FMCA LA bank rx | | | | FMCA_LA_RX_n10 | data n10 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_G25 | | | FMCA LA bank rx | 4 0/4 5/4 0/0 5/2 0/// \/DC | | | FMCA_LA_RX_p11 | data p11 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_P19 | | | FMCA LA bank rx | 4 0/4 5/4 0/0 5/2 0/// \/DC | | | FMCA_LA_RX_n11 | data n11 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_P18 | | | FMCA LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_LA_RX_p12 | data p12 | 1.2/1.3/1.0/2.3/3.0V/LVD3 | PIN_N17 | | | FMCA LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_LA_RX_n12 | data n12 | 1.2/1.3/1.0/2.3/3.04/2403 | PIN_P17 | | | FMCA LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_LA_RX_p13 | data p13 | 1.2/1.3/1.0/2.3/3.04/2403 | PIN_G19 | | | FMCA LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_LA_RX_n13 | data n13 | 1.2/1.3/1.0/2.3/3.0 4/2400 | PIN_F19 | | | FMCA LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_LA_RX_p14 | data p14 | 112/110/110/210/010 1/2120 | PIN_E17 | | | FMCA LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_LA_RX_n14 | data n14 | 112/110/110/210/0101/2120 | PIN_D17 | | | FMCA HA bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_HA_TX_CLK_p | tx clock positive | | PIN_T31 | | | FMCA HA bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_HA_TX_CLK_n | tx clock negative | | PIN_R31 | | | FMCA HA bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_HA_TX_p0 | tx data p0 | | PIN_T27 | | | FMCA HA bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_HA_TX_n0 | tx data n0 | | PIN_U27 | | | FMCA HA bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | DIN YOU | | FMCA_HA_TX_p1 | tx data p1 | | PIN_Y32 | | EMOA IIA TV4 | FMCA HA bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | DIN WO4 | | FMCA_HA_TX_n1 | tx data n1 | | PIN_W31 | | EMCA HA TV -2 | FMCA HA bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | DINI WOO | | FMCA_HA_TX_p2 | tx data p2 FMCA HA bank | | PIN_W28 | | EMCA HA TV 52 | | 1.2/1.5/1.8/2.5/3.0V/LVDS | DIN V20 | | FMCA_HA_TX_n2 | tx data n2 | 1 2/1 5/1 9/2 5/2 0\// \/DC | PIN_V28 | | FMCA_HA_TX_p3 | FMCA HA bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_R27 | | | tx data p3 | | | |------------------|-----------------------------|---------------------------|---------| | FMCA_HA_TX_n3 | FMCA HA bank
tx data n3 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_P27 | | FMCA_HA_TX_p4 | FMCA HA bank
tx data p4 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_P31 | | FMCA_HA_TX_n4 | FMCA HA bank
tx data n4 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_P30 | | FMCA_HA_TX_p5 | FMCA HA bank
tx data p5 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_W18 | | FMCA_HA_TX_n5 | FMCA HA bank
tx data n5 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_V18 | | FMCA_HA_TX_p6 | FMCA HA bank
tx data p6 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_P23 | | FMCA_HA_TX_n6 | FMCA HA bank
tx data n6 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_N23 | | FMCA_HA_TX_p7 | FMCA HA bank
tx data p7 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_J25 | | FMCA_HA_TX_n7 | FMCA HA bank
tx data n7 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_J24 | | FMCA_HA_TX_p8 | FMCA HA bank
tx data p8 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_V29 | | FMCA_HA_TX_n8 | FMCA HA bank
tx data n8 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_U29 | | FMCA_HA_TX_p9 | FMCA HA bank
tx data p9 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_L30 | | FMCA_HA_TX_n9 | FMCA HA bank
tx data n9 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_L29 | | FMCA_HA_TX_p10 | FMCA HA bank
tx data p10 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_H32 | | FMCA_HA_TX_n10 | FMCA HA bank
tx data n10 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_H31 | | FMCA_HA_RX_CLK_p | FMCA HA bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_N25 | | FMCA_HA_RX_CLK_n | FMCA HA bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_M25 | | FMCA_HA_RX_p0 | FMCA HA bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_Y30 | | FMCA_HA_RX_n0 | FMCA HA bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_Y29 | | FMCA_HA_RX_p1 | FMCA HA bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_W32 | | FMCA_HA_RX_n1 | FMCA HA bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_V31 | | | rx data n1 | | | |------------------|--------------------------------|---------------------------|---------| | FMCA_HA_RX_p2 | FMCA HA bank
rx data p2 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_U30 | | FMCA_HA_RX_n2 | FMCA HA bank
rx data n2 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_T29 | | FMCA_HA_RX_p3 | FMCA HA bank
rx data p3 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_T30 | | FMCA_HA_RX_n3 | FMCA HA bank rx data n3 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_R30 | | FMCA_HA_RX_p4 | FMCA HA bank
rx data p4 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_M27 | | FMCA_HA_RX_n4 | FMCA HA bank rx data n4 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_L26 | | FMCA_HA_RX_p5 | FMCA HA bank
rx data p5 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_Y28 | | FMCA_HA_RX_n5 | FMCA HA bank rx data n5 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_Y27 | | FMCA_HA_RX_p6 | FMCA HA bank
rx data p6 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_L23 | | FMCA_HA_RX_n6 | FMCA HA bank rx data n6 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_K24 | | FMCA_HA_RX_p7 | FMCA HA bank
rx data p7 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_H27 | | FMCA_HA_RX_n7 | FMCA HA bank
rx data n7 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_G26 | | FMCA_HA_RX_p8 | FMCA HA bank
rx data p8 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_L27 | | FMCA_HA_RX_n8 | FMCA HA bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_K27 | | FMCA_HA_RX_p9 | FMCA HA bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_G32 | | FMCA_HA_RX_n9 | FMCA HA bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_F32 | | FMCA_HA_RX_p10 | FMCA HA bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_E29 | | FMCA_HA_RX_n10 | FMCA HA bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_D29 | | FMCA_HB_TX_CLK_p | FMCA HB bank tx clock positive | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_B23 | | FMCA_HB_TX_CLK_n | FMCA HB bank tx clock negative | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_A23 | | FMCA_HB_TX_p0 | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_N28 | | | tx data p0 | | | |-------------------|-------------------------|-----------------------------------|-------------| | | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_HB_TX_n0 | tx data n0 | 1.2/1.5/1.6/2.5/3.0V/LVDS | PIN_M28 | | | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_HB_TX_p1 | tx data p1 | 1.2/1.3/1.0/2.3/3.0 V/L V D 3 | PIN_M18 | | | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_HB_TX_n1 | tx data n1 | 1.2/1.3/1.0/2.3/3.0 V/L V D 3 | PIN_M17 | | | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_HB_TX_p2 | tx data p2 | 1.2/1.3/1.3/2.3/3.04/24/20 | PIN_K18 | | | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_HB_TX_n2 | tx data n2 | 112, 110, 110, 210, 610 1, 21 2 6 | PIN_K17 | | | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_HB_TX_p3 | tx data p3 | 112, 110, 110, 210, 610 1, 21 2 6 | PIN_H17 | | | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_HB_TX_n3 | tx data n3 | | PIN_H16 | | | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_HB_TX_p4 | tx data p4 | | PIN_G17 | | | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_HB_TX_n4 | tx data n4 | | PIN_F17 | | | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_HB_TX_p5 | tx data p5 | | PIN_C30 | | | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | DIN DOG | | FMCA_HB_TX_n5 | tx data n5 | | PIN_B29 | | | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | DIN DOG | | FMCA_HB_TX_p6 | tx data p6 | | PIN_B26 | | EMCA LID TVC | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | DIN AGC | | FMCA_HB_TX_n6 | tx data n6 | | PIN_A26 | | FMCA HB TX p7 | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN E18 | | FINICA_RB_IX_P/ | tx data p7 | | PIN_E 10 | | EMCA UD TV n7 | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | DINI D40 | | FMCA_HB_TX_n7 | tx data n7 FMCA HB bank | | PIN_D18 | | FMCA_HB_TX_p8 | tx data p8 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_E30 | | FINICA_RB_TA_P6 | FMCA HB bank | | FIIN_E3U | | FMCA_HB_TX_n8 | tx data n8 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_D30 | | I WCA_IIB_IX_IIO | FMCA HB bank | | FII4_D30 | | FMCA_HB_TX_p9 | tx data p9 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_A29 | | і шод_пь_тд_ра | FMCA HB bank | | 1 III_A23 | | FMCA_HB_TX_n9 | tx data n9 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN A28 | | 07D_17 | FMCA HB bank | | , 114_, 120 | | FMCA_HB_TX_p10 | tx data p10 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_B17 | | FMCA_HB_TX_n10 | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_A17 | | IIIOA_IID_IA_III0 | I MOA TID DAIIK | 1.2, 1.3, 1.0,2.3,3.0 4,2 4,2 | | | | tx data n10 | | | |-------------------|-------------------------|---|------------------| | | FMCA HB bank | | | | FMCA_HB_RX_CLK_p | rx clock positive | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_E32 | | | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_HB_RX_CLK_n | rx clock negative | 1.2/1.5/1.6/2.5/3.0V/LVD5 | PIN_D32 | | | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_HB_RX_p0 | rx data p0 | 1.2/1.3/1.0/2.3/3.0 4/24 03 | PIN_R24 | | | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_HB_RX_n0 | rx data n0 | | PIN_P24 | | | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_HB_RX_p1 | rx data p1 | | PIN_U18 | | EMOA LID DV4 | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | DIN T40 | | FMCA_HB_RX_n1 | rx data n1 | | PIN_T18 | | EMCA UD DV | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN N19 | | FMCA_HB_RX_p2 | rx data p2 FMCA HB bank | + | PIN_N 19 | | FMCA_HB_RX_n2 | rx data n2 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN M20 | | I WICA_IID_KX_IIZ | FMCA
HB bank | | F IIV_IVIZU | | FMCA_HB_RX_p3 | rx data p3 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN J19 | | - шех_пь_кх_ре | FMCA HB bank | | 1 111_010 | | FMCA_HB_RX_n3 | rx data n3 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN H19 | | | FMCA HB bank | | _ | | FMCA_HB_RX_p4 | rx data p4 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_C19 | | | FMCA HB bank | 4 0/4 5/4 0/0 5/0 0\//\ | | | FMCA_HB_RX_n4 | rx data n4 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_C18 | | | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_HB_RX_p5 | rx data p5 | 1.2/1.3/1.0/2.3/3.0 \/ L \/ D \/ 3 | PIN_D27 | | | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_HB_RX_n5 | rx data n5 | 1.2/1.3/1.0/2.3/3.0 4/24 03 | PIN_C27 | | | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_HB_RX_p6 | rx data p6 | 112/110/110/210/0101/2120 | PIN_B25 | | | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCA_HB_RX_n6 | rx data n6 | | PIN_A25 | | | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | DINI 1500 | | FMCA_HB_RX_p7 | rx data p7 | - | PIN_K26 | | EMOA LID DY - | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | DIN KOS | | FMCA_HB_RX_n7 | rx data n7 | | PIN_K25 | | EMCA UD DV 50 | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | DIN E26 | | FMCA_HB_RX_p8 | rx data p8 | | PIN_F26 | | EMCA UP DV 50 | FMCA HB bank rx data n8 | 1.2/1.5/1.8/2.5/3.0V/LVDS | DIN E27 | | FMCA_HB_RX_n8 | | 1 2/1 5/1 9/2 5/2 0\///\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | PIN_E27 | | FMCA_HB_RX_p9 | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_C25 | | | ry data n0 | | | |---------------------------------------|-------------------------------|---------------------------|-------------------| | | rx data p9 | | | | FMCA_HB_RX_n9 | FMCA HB bank rx data n9 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_C24 | | FMCA_HB_RX_p10 | FMCA HB bank rx data p10 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN H24 | | FMCA_HB_RX_n10 | FMCA HB bank | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN H23 | | FMCA_SCL | FMCA serial | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN F29 | | FMCA SDA | | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN F28 | | FMCA GA0 | | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN H18 | | | | | | | FMCA_GA1 | | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_T23 | | FMCA_CLK_M2C_p0 | FMCA card to carrier clock p0 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_G23 | | FMCA_CLK_M2C_n0 | FMCA card to carrier clock n0 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_F23 | | FMCA_CLK_M2C_p1 | FMCA card to carrier clock p1 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN G29 | | FMCA_CLK_M2C_n1 | FMCA card to | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_G28 | | | FMCA DP | 1.4-V PCML / LVDS | | | FMCA_GBTCLK_M2C_p0 FMCA_GBTCLK_M2C_p1 | FMCA DP | 1.4-V PCML / LVDS | PIN_AB39 PIN_AB40 | | FMCA_DP_C2M_p0 | FMCA | 1.4-V PCML | PIN_W41 | | FMCA_DP_M2C_p0 | FMCA Receiver DP 0 | 1.4-V PCML | PIN_AB43 | | FMCA_DP_C2M_p1 | FMCA
Transmitter DP 1 | 1.4-V PCML | PIN_U41 | | FMCA_DP_M2C_p1 | FMCA Receiver
DP 1 | 1.4-V PCML | PIN_Y43 | | FMCA_DP_C2M_p2 | FMCA
Transmitter DP 2 | 1.4-V PCML | PIN_R41 | | FMCA_DP_M2C_p2 | FMCA Receiver DP 2 | 1.4-V PCML | PIN_V43 | | FMCA_DP_C2M_p3 | FMCA
Transmitter DP 3 | 1.4-V PCML | PIN_N41 | | FMCA_DP_M2C_p3 | FMCA Receiver DP 3 | 1.4-V PCML | PIN_T43 | | FMCA_DP_C2M_p4 | FMCA
Transmitter DP 4 | 1.4-V PCML | PIN_J41 | | FMCA_DP_M2C_p4 | FMCA Receiver DP 4 | 1.4-V PCML | PIN_M43 | |----------------|--------------------------|------------|---------| | FMCA_DP_C2M_p5 | FMCA
Transmitter DP 5 | 1.4-V PCML | PIN_K39 | | FMCA_DP_M2C_p5 | FMCA Receiver DP 5 | 1.4-V PCML | PIN_K43 | | FMCA_DP_C2M_p6 | FMCA
Transmitter DP 6 | 1.4-V PCML | PIN_H39 | | FMCA_DP_M2C_p6 | FMCA Receiver
DP 6 | 1.4-V PCML | PIN_H43 | | FMCA_DP_C2M_p7 | FMCA
Transmitter DP 7 | 1.4-V PCML | PIN_G41 | | FMCA_DP_M2C_p7 | FMCA Receiver
DP 7 | 1.4-V PCML | PIN_F43 | | FMCA_DP_C2M_p8 | FMCA
Transmitter DP 8 | 1.4-V PCML | PIN_E41 | | FMCA_DP_M2C_p8 | FMCA Receiver
DP 8 | 1.4-V PCML | PIN_D43 | | FMCA_DP_C2M_p9 | FMCA
Transmitter DP 9 | 1.4-V PCML | PIN_D39 | | FMCA_DP_M2C_p9 | FMCA Receiver
DP 9 | 1.4-V PCML | PIN_C41 | Table 9-2 FMCB (LPC) Pin Assignments, Schematic Signal Names, and Functions | Schematic
Signal Name | Description | I/O Standard | Stratix V GX Pin Number | |--------------------------|--------------------------------|---------------------------|-------------------------| | FMCB_LA_TX_CLK_p | FMCB LA bank tx clock positive | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_G37 | | FMCB_LA_TX_CLK_n | FMCB LA bank tx clock negative | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_F36 | | FMCB_LA_TX_p0 | FMCB LA bank tx
data p0 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_P33 | | FMCB_LA_TX_n0 | FMCB LA bank tx
data n0 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_P32 | | FMCB_LA_TX_p1 | FMCB LA bank tx
data p1 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_V34 | | FMCB_LA_TX_n1 | FMCB LA bank tx
data n1 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_V33 | | FMCB_LA_TX_p2 | FMCB LA bank tx
data p2 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_W35 | | | FMCB LA bank tx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | |----------------|-----------------------------|------------------------------|---------| | FMCB_LA_TX_n2 | data n2 | 1.2/1.3/1.3/2.3/3.0 4/24 0/3 | PIN_V36 | | FMCB_LA_TX_p3 | FMCB LA bank tx data p3 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_R33 | | FMCB_LA_TX_n3 | FMCB LA bank tx
data n3 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_P34 | | FMCB_LA_TX_p4 | FMCB LA bank tx
data p4 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_T34 | | FMCB_LA_TX_n4 | FMCB LA bank tx
data n4 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_R34 | | FMCB_LA_TX_p5 | FMCB LA bank tx
data p5 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_P39 | | FMCB_LA_TX_n5 | FMCB LA bank tx
data n5 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_P38 | | FMCB_LA_TX_p6 | FMCB LA bank tx
data p6 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_N38 | | FMCB_LA_TX_n6 | FMCB LA bank tx
data n6 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_N37 | | FMCB_LA_TX_p7 | FMCB LA bank tx
data p7 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_M34 | | FMCB_LA_TX_n7 | FMCB LA bank tx
data n7 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_L33 | | FMCB_LA_TX_p8 | FMCB LA bank tx
data p8 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_M39 | | FMCB_LA_TX_n8 | FMCB LA bank tx
data n8 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_M38 | | FMCB_LA_TX_p9 | FMCB LA bank tx
data p9 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_M37 | | FMCB_LA_TX_n9 | FMCB LA bank tx
data n9 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_M36 | | FMCB_LA_TX_p10 | FMCB LA bank tx
data p10 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_J34 | | FMCB_LA_TX_n10 | FMCB LA bank tx
data n10 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_J33 | | FMCB_LA_TX_p11 | FMCB LA bank tx
data p11 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_K35 | | FMCB_LA_TX_n11 | FMCB LA bank tx
data n11 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_K34 | | FMCB_LA_TX_p12 | FMCB LA bank tx
data p12 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_E33 | | FMCB_LA_TX_n12 | FMCB LA bank tx
data n12 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_D33 | | FMCB_LA_TX_p13 | FMCB LA bank tx
data p13 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_G34 | |------------------|--------------------------------|---------------------------|---------| | FMCB_LA_TX_n13 | FMCB LA bank tx data n13 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_F34 | | FMCB_LA_TX_p14 | FMCB LA bank tx
data p14 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_C37 | | FMCB_LA_TX_n14 | FMCB LA bank tx | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_B38 | | FMCB_LA_TX_p15 | FMCB LA bank tx
data p15 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_D36 | | FMCB_LA_TX_n15 | FMCB LA bank tx
data n15 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_D35 | | FMCB_LA_TX_p16 | FMCB LA bank tx
data p16 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_C33 | | FMCB_LA_TX_n16 | FMCB LA bank tx
data n16 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_B32 | | FMCB_LA_RX_CLK_p | FMCB LA bank rx clock positive | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_U36 | | FMCB_LA_RX_CLK_n | FMCB LA bank rx clock negative | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_T36 | | FMCB_LA_RX_p0 | FMCB LA bank rx
data p0 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_W34 | | FMCB_LA_RX_n0 | FMCB LA bank rx data n0 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_V35 | | FMCB_LA_RX_p1 | FMCB LA bank rx
data p1 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_U33 | | FMCB_LA_RX_n1 | FMCB LA bank rx
data n1 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_U32 | | FMCB_LA_RX_p2 | FMCB LA bank rx
data p2 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_U35 | | FMCB_LA_RX_n2 | FMCB LA bank rx
data n2 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_T35 | | FMCB_LA_RX_p3 | FMCB LA bank rx
data p3 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_T33 | | FMCB_LA_RX_n3 | FMCB LA bank rx
data n3 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_T32 | | FMCB_LA_RX_p4 | FMCB LA bank rx
data p4 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_N32 | | FMCB_LA_RX_n4 | FMCB LA bank rx
data n4 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_M33 | | FMCB_LA_RX_p5 | FMCB LA bank rx
data p5 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_L32 | | | | 1 | | |----------------|-----------------------------|-----------------------------|---------| | FMCB_LA_RX_n5 | FMCB LA bank rx data n5 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_K32 | | FMCB_LA_RX_p6 | FMCB LA bank rx
data p6 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN L36 | | | FMCB LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCB_LA_RX_n6 | data n6 FMCB LA bank rx | 1.2/1.3/1.3/2.3/3.0 4/2 4/2 | PIN_L35 | | FMCB_LA_RX_p7 | data p7 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_J36 | | FMCB LA RX n7 | FMCB LA bank rx data n7 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN H36 | | FMCB_LA_RX_p8 | FMCB LA bank rx
data p8 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_K37 | | FMCB_LA_RX_n8 | FMCB LA bank rx
data n8 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_K36 | | FMCB_LA_RX_p9 | FMCB LA bank rx
data p9 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_H35 | | FMCB_LA_RX_n9 | FMCB LA bank rx
data n9 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_G35 | | FMCB_LA_RX_p10 | FMCB LA bank rx
data p10 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_H34 | | FMCB_LA_RX_n10 | FMCB LA bank rx data n10 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_H33 | | FMCB_LA_RX_p11 | FMCB LA bank rx
data p11 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_F35 | | FMCB_LA_RX_n11 | FMCB LA bank rx data n11 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_E35 | | FMCB_LA_RX_p12 | FMCB LA bank rx
data p12 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_C36 | | FMCB_LA_RX_n12 |
FMCB LA bank rx data n12 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_B35 | | FMCB_LA_RX_p13 | FMCB LA bank rx
data p13 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_C34 | | FMCB_LA_RX_n13 | FMCB LA bank rx
data n13 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_B34 | | FMCB_LA_RX_p14 | FMCB LA bank rx
data p14 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_A35 | | FMCB_LA_RX_n14 | FMCB LA bank rx
data n14 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_A34 | | FMCB_SCL | FMCB serial clock | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_E36 | | FMCB_SDA | FMCB serial data | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_D37 | | FMCB_GA0 | FMCB GA0 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_J37 | | FMCB_GA1 | FMCB GA1 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_H37 | | | FMCB card to carrier clock p0 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_B39 | |--------------------|-------------------------------|---------------------------|----------| | | FMCB card to carrier clock n0 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_A38 | | | FMCB card to carrier clock p1 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_B37 | | FMCB_CLK_M2C_n1 | carrier clock n1 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_A37 | | FMCB_GBTCLK_M2C_p0 | FMCB DP Reference clock 0 | 1.4-V PCML / LVDS | PIN_AF38 | | | FMCB Transmitter DP 0 | 1.4-V PCML | PIN_AL41 | | | FMCB Receiver DP
0 | 1.4-V PCML | PIN_AP43 | Table 9-3 FMCC (LPC) Pin Assignments, Schematic Signal Names, and Functions | Schematic
Signal Name | Description | I/O Standard | Stratix V GX Pin Number | |--------------------------|--------------------------------|---------------------------|-------------------------| | FMCC_LA_TX_CLK_p | FMCC LA bank tx clock positive | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AY19 | | FMCC_LA_TX_CLK_n | FMCC LA bank tx clock negative | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_BA19 | | FMCC_LA_TX_p0 | FMCC LA bank tx
data p0 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AU20 | | FMCC_LA_TX_n0 | FMCC LA bank tx data n0 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AV20 | | FMCC_LA_TX_p1 | FMCC LA bank tx
data p1 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AU16 | | FMCC_LA_TX_n1 | FMCC LA bank tx data n1 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AV16 | | FMCC_LA_TX_p2 | FMCC LA bank tx
data p2 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AG17 | | FMCC_LA_TX_n2 | FMCC LA bank tx data n2 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AG18 | | FMCC_LA_TX_p3 | FMCC LA bank tx
data p3 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AJ17 | | FMCC_LA_TX_n3 | FMCC LA bank tx data n3 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AK17 | | FMCC_LA_TX_p4 | FMCC LA bank tx
data p4 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AJ19 | | FMCC_LA_TX_n4 | FMCC LA bank tx data n4 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AJ20 | | | EMCC LA bank for | | | |----------------|-----------------------------|---------------------------|----------| | FMCC_LA_TX_p5 | FMCC LA bank tx
data p5 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AU17 | | FMCC_LA_TX_n5 | FMCC LA bank tx data n5 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AV17 | | FMCC_LA_TX_p6 | FMCC LA bank tx
data p6 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN AL18 | | FMCC_LA_TX_n6 | FMCC LA bank tx | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN AL19 | | FMCC_LA_TX_p7 | FMCC LA bank tx | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN AV19 | | FMCC_LA_TX_n7 | FMCC LA bank tx | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN AW19 | | FMCC_LA_TX_p8 | FMCC LA bank tx
data p8 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN AW20 | | FMCC_LA_TX_n8 | FMCC LA bank tx | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AW21 | | FMCC_LA_TX_p9 | FMCC LA bank tx | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_BC20 | | FMCC_LA_TX_n9 | FMCC LA bank tx
data n9 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_BD20 | | FMCC_LA_TX_p10 | FMCC LA bank tx
data p10 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN AU21 | | FMCC_LA_TX_n10 | FMCC LA bank tx
data n10 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN AU22 | | FMCC_LA_TX_p11 | FMCC LA bank tx | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AY21 | | FMCC_LA_TX_n11 | FMCC LA bank tx
data n11 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_BA21 | | FMCC_LA_TX_p12 | FMCC LA bank tx
data p12 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AR17 | | FMCC_LA_TX_n12 | FMCC LA bank tx
data n12 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AT17 | | FMCC_LA_TX_p13 | FMCC LA bank tx
data p13 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AL20 | | FMCC_LA_TX_n13 | FMCC LA bank tx data n13 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AM20 | | FMCC_LA_TX_p14 | FMCC LA bank tx
data p14 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AN19 | | FMCC_LA_TX_n14 | FMCC LA bank tx
data n14 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AP19 | | FMCC_LA_TX_p15 | FMCC LA bank tx
data p15 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AP21 | | | FMCC LA bank tx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | |------------------|----------------------------|--|-----------| | FMCC_LA_TX_n15 | data n15 | 1.2/1.3/1.0/2.3/3.0V/LVD3 | PIN AR21 | | | FMCC LA bank tx | 1.2/1.5/1.8/2.5/3.0V/LVDS | II1_AIX21 | | FMCC_LA_TX_p16 | data p16 | 1.2/1.3/1.0/2.3/3.0 4/2 4 5 5 | PIN AM22 | | | FMCC LA bank tx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCC_LA_TX_n16 | data n16 | 11.2, 11.0, 11.6, 21.0, 61.6 1, 21.0 6 | PIN AN22 | | | FMCC LA bank rx | | | | FMCC_LA_RX_CLK_p | clock positive | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN BB18 | | | FMCC LA bank rx | | | | FMCC_LA_RX_CLK_n | clock negative | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN BB17 | | | FMCC LA bank rx | | | | FMCC_LA_RX_p0 | data p0 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AY22 | | | FMCC LA bank rx | | | | FMCC_LA_RX_n0 | data n0 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_BA22 | | | FMCC LA bank rx | 4 0/4 5/4 0/0 5/0 00/// 0/50 | | | FMCC_LA_RX_p1 | data p1 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AG21 | | | FMCC LA bank rx | 4 0/4 5/4 0/0 5/2 0/// //50 | | | FMCC_LA_RX_n1 | data n1 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AH21 | | | FMCC LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCC_LA_RX_p2 | data p2 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AG19 | | | FMCC LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCC_LA_RX_n2 | data n2 | 1.2/1.3/1.0/2.3/3.0 \/ L\D3 | PIN_AG20 | | | FMCC LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCC_LA_RX_p3 | data p3 | 1.271.371.372.373.3 472423 | PIN_AK20 | | | FMCC LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCC_LA_RX_n3 | data n3 | ,,,,, | PIN_AJ21 | | | FMCC LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCC_LA_RX_p4 | data p4 | 1 | PIN_BB20 | | | FMCC LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCC_LA_RX_n4 | data n4 | | PIN_BB21 | | | FMCC LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | DIN 5.000 | | FMCC_LA_RX_p5 | data p5 | - | PIN_BC22 | | FM00 LA BY 5 | FMCC LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | DIN BESS | | FMCC_LA_RX_n5 | data n5 | - | PIN_BD22 | | EMOO LA DV O | FMCC LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | DIN AREAC | | FMCC_LA_RX_p6 | data p6 | | PIN_AM19 | | EMCC LA DV mc | FMCC LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | DIN ANGO | | FMCC_LA_RX_n6 | data n6 | | PIN_AN20 | | EMCC IA DV -7 | FMCC LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | DIN AD10 | | FMCC_LA_RX_p7 | data p7 | | PIN_AP18 | | FMCC_LA_RX_n7 | FMCC LA bank rx
data n7 | 1.2/1.5/1.8/2.5/3.0V/LVDS | DIN AD40 | | FINICC_LA_KA_II/ | uala II <i>I</i> | | PIN_AR19 | | | FMCC LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | |--------------------|-------------------|------------------------------------|----------|--| | FMCC_LA_RX_p8 | data p8 | | PIN_AN17 | | | | FMCC LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | | FMCC_LA_RX_n8 | data n8 | | PIN_AP16 | | | | FMCC LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | | FMCC_LA_RX_p9 | data p9 | | PIN_AR18 | | | | FMCC LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | | FMCC_LA_RX_n9 | data n9 | | PIN_AT18 | | | | FMCC LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | | FMCC_LA_RX_p10 | data p10 | | PIN_AR20 | | | | FMCC LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | | FMCC_LA_RX_n10 | data n10 | | PIN_AT20 | | | | FMCC LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | | FMCC_LA_RX_p11 | data p11 | | PIN_AU18 | | | | FMCC LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | | FMCC_LA_RX_n11 | data n11 | | PIN_AU19 | | | | FMCC LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | | FMCC_LA_RX_p12 | data p12 | 1.2.1.0.1.0.2.0.0.0.0.0.0 | PIN_AW16 | | | | FMCC LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | | FMCC_LA_RX_n12 | data n12 | 1.2.1.0.1.0.2.0.0.0.0.0.0 | PIN_AW17 | | | | FMCC LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | | FMCC_LA_RX_p13 | data p13 | 112, 113, 113, 213, 213 | PIN_AR22 | | | | FMCC LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | | FMCC_LA_RX_n13 | data n13 | 112/110/110/210/010 1/2120 | PIN_AT21 | | | | FMCC LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | | FMCC_LA_RX_p14 | data p14 | 112, 116, 116, 216, 616 17, 21 2 6 | PIN_AV22 | | | | FMCC LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | | FMCC_LA_RX_n14 | data n14 | 1.2, 1.3, 1.3, 2.3, 3.3, 4, 2, 4 | PIN_AW22 | | | FMCC_SCL | FMCC serial clock | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AH18 | | | FMCC_SDA | FMCC serial data | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AH19 | | | FMCC_GA0 | FMCC GA0 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AY16 | | | FMCC_GA1 | FMCC GA1 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_BA16 | | | | FMCC card to | 4 2/4 E/4 9/2 E/2 0V/I V/DS | | | | FMCC_CLK_M2C_p0 | carrier clock p0 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_BC19 | | | | FMCC card to | 4 2/4 E/4 9/2 E/2 0V/I VIDE | | | | FMCC_CLK_M2C_n0 | carrier clock n0 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_BD19 | | | | FMCC card to | 4 2/4 E/4 9/2 E/2 9V/I VIDE | | | | FMCC_CLK_M2C_p1 | carrier clock p1 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AJ15 | | | | FMCC card to | 4 2/4 5/4 9/2 5/2 22/11 2/50 | | | | FMCC_CLK_M2C_n1 | carrier clock n1 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AJ16 | | | | FMCC DP Reference | 4 4 V DOM: / LVDC | | | | FMCC_GBTCLK_M2C_p(| clock 0 | 1.4-V PCML / LVDS | PIN_AF7 | | | | | | | | | FMCC_DP_C2M_p0 | FMCC Transmitter DP 0 | 1.4-V PCML | PIN_AL4 | |----------------|-----------------------|------------|---------| | FMCC_DP_M2C_p0 | FMCC Receiver DP
0 | 1.4-V PCML | PIN_AP2 | Table 9-4 FMCD (HPC) Pin Assignments, Schematic Signal Names, and Functions | Schematic
Signal Name | Description | I/O Standard | Stratix V GX Pin
Number | |--------------------------|--------------------------------|---------------------------|----------------------------| |
FMCD_LA_TX_CLK_p | FMCD LA bank tx clock positive | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_F9 | | FMCD_LA_TX_CLK_n | FMCD LA bank tx clock negative | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_E9 | | FMCD_LA_TX_p0 | FMCD LA bank tx data p0 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_D11 | | FMCD_LA_TX_n0 | FMCD LA bank tx
data n0 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_C10 | | FMCD_LA_TX_p1 | FMCD LA bank tx
data p1 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_B10 | | FMCD_LA_TX_n1 | FMCD LA bank tx
data n1 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_A10 | | FMCD_LA_TX_p2 | FMCD LA bank tx
data p2 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_D10 | | FMCD_LA_TX_n2 | FMCD LA bank tx
data n2 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_C9 | | FMCD_LA_TX_p3 | FMCD LA bank tx
data p3 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_B7 | | FMCD_LA_TX_n3 | FMCD LA bank tx
data n3 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_A7 | | FMCD_LA_TX_p4 | FMCD LA bank tx
data p4 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_E12 | | FMCD_LA_TX_n4 | FMCD LA bank tx
data n4 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_E11 | | FMCD_LA_TX_p5 | FMCD LA bank tx
data p5 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_K13 | | FMCD_LA_TX_n5 | FMCD LA bank tx
data n5 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_J13 | | FMCD_LA_TX_p6 | FMCD LA bank tx
data p6 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_H12 | | FMCD_LA_TX_n6 | FMCD LA bank tx data n6 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_H11 | | FMCD_LA_TX_p7 | FMCD LA bank tx
data p7 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_K12 | | | FMCD LA bank tx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | |------------------|--------------------------------|---------------------------|---------| | FMCD_LA_TX_n7 | data n7 | | PIN_J12 | | FMCD_LA_TX_p8 | FMCD LA bank tx
data p8 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_K8 | | FMCD_LA_TX_n8 | FMCD LA bank tx data n8 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_J9 | | FMCD_LA_TX_p9 | FMCD LA bank tx
data p9 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_K10 | | FMCD_LA_TX_n9 | FMCD LA bank tx data n9 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_K9 | | FMCD_LA_TX_p10 | FMCD LA bank tx
data p10 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_P8 | | FMCD_LA_TX_n10 | FMCD LA bank tx data n10 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_N8 | | FMCD_LA_TX_p11 | FMCD LA bank tx
data p11 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_M12 | | FMCD_LA_TX_n11 | FMCD LA bank tx
data n11 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_L12 | | FMCD_LA_TX_p12 | FMCD LA bank tx
data p12 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_T10 | | FMCD_LA_TX_n12 | FMCD LA bank tx data n12 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_R10 | | FMCD_LA_TX_p13 | FMCD LA bank tx data p13 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_N11 | | FMCD_LA_TX_n13 | FMCD LA bank tx data n13 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_M11 | | FMCD_LA_TX_p14 | FMCD LA bank tx
data p14 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_U12 | | FMCD_LA_TX_n14 | FMCD LA bank tx data n14 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_U11 | | FMCD_LA_TX_p15 | FMCD LA bank tx
data p15 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_P12 | | FMCD_LA_TX_n15 | FMCD LA bank tx
data n15 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_R12 | | FMCD_LA_TX_p16 | FMCD LA bank tx
data p16 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_U14 | | FMCD_LA_TX_n16 | FMCD LA bank tx
data n16 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_T14 | | FMCD_LA_RX_CLK_p | FMCD LA bank rx clock positive | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_M9 | | FMCD_LA_RX_CLK_n | FMCD LA bank rx clock negative | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_L9 | | | FMCD LA bank rx | | | |----------------|-----------------------------|---------------------------|---------| | FMCD_LA_RX_p0 | data p0 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_H15 | | FMCD LA RX n0 | FMCD LA bank rx
data n0 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN G14 | | | FMCD LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | 1014 | | FMCD_LA_RX_p1 | data p1 | 1.2/1.5/1.6/2.5/3.0V/LVD5 | PIN_H14 | | FMCD_LA_RX_n1 | FMCD LA bank rx
data n1 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_H13 | | FMCD_LA_RX_p2 | FMCD LA bank rx
data p2 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN D12 | | FMCD_LA_RX_n2 | FMCD LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_C12 | | FMCD_LA_RX_p3 | FMCD LA bank rx
data p3 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN B11 | | FMCD_LA_RX_p3 | FMCD LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN A11 | | FMCD_LA_RX_p4 | FMCD LA bank rx
data p4 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN G11 | | FMCD LA RX n4 | FMCD LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN F11 | | | FMCD LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCD_LA_RX_p5 | data p5 FMCD LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_G10 | | FMCD_LA_RX_n5 | data n5 FMCD LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_F10 | | FMCD_LA_RX_p6 | data p6 FMCD LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_L15 | | FMCD_LA_RX_n6 | data n6 | 1.2/1.5/1.8/2.5/3.0V/LVD5 | PIN_K14 | | FMCD_LA_RX_p7 | FMCD LA bank rx
data p7 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_K11 | | FMCD_LA_RX_n7 | FMCD LA bank rx
data n7 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_L11 | | FMCD_LA_RX_p8 | FMCD LA bank rx
data p8 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_J10 | | FMCD_LA_RX_n8 | FMCD LA bank rx
data n8 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_H10 | | FMCD_LA_RX_p9 | FMCD LA bank rx
data p9 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_P14 | | FMCD_LA_RX_n9 | FMCD LA bank rx
data n9 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN N14 | | FMCD_LA_RX_p10 | FMCD LA bank rx
data p10 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_T12 | | | · · | • | | | | | 1 | | |-----------------------------------|-----------------|---|--------------| | | FMCD LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCD_LA_RX_n10 | data n10 | | PIN_T11 | | | FMCD LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCD_LA_RX_p11 | data p11 | 112/110/110/210/010172120 | PIN_P13 | | | FMCD LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCD_LA_RX_n11 | data n11 | 1.2/1.5/1.6/2.5/3.0V/LVD5 | PIN_N13 | | | FMCD LA bank rx | 4 0/4 5/4 0/0 5/0 00//10/50 | | | FMCD_LA_RX_p12 | data p12 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_U9 | | | FMCD LA bank rx | | | | FMCD_LA_RX_n12 | data n12 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN T9 | | | FMCD LA bank rx | | | | FMCD_LA_RX_p13 | data p13 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN V10 | | e=_=p.re | FMCD LA bank rx | | | | FMCD LA RX n13 | data n13 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN V9 | | I MOD_LA_I\A_III3 | FMCD LA bank rx | | 1111_73 | | EMCD LA DV m44 | | 1.2/1.5/1.8/2.5/3.0V/LVDS | DIN V42 | | FMCD_LA_RX_p14 | data p14 | | PIN_V12 | | EMOD I A DV 44 | FMCD LA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | DIN W44 | | FMCD_LA_RX_n14 | data n14 | | PIN_V11 | | | FMCD HA bank tx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCD_HA_TX_CLK_p | clock positive | | PIN_T17 | | | FMCD HA bank tx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCD_HA_TX_CLK_n | clock negative | 112/110/110/210/0101/2120 | PIN_T16 | | | FMCD HA bank tx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCD_HA_TX_p0 | data p0 | 1.2/1.3/1.0/2.3/3.0 4/2 4/2 | PIN_G13 | | | FMCD HA bank tx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCD_HA_TX_n0 | data n0 | 1.2/1.5/1.6/2.5/3.0V/LVD5 | PIN_F13 | | | FMCD HA bank tx | 1 0/4 5/4 0/0 5/0 0\//\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | FMCD_HA_TX_p1 | data p1 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_L21 | | | FMCD HA bank tx | | | | FMCD_HA_TX_n1 | data n1 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN K20 | | | FMCD HA bank tx | | - | | FMCD_HA_TX_p2 | data p2 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN M14 | | • • • · · · · · · · · · · · · · · | FMCD HA bank tx | | <u></u> | | FMCD HA TX n2 | data n2 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_L14 | | I MOD_IIA_IA_IIZ | FMCD HA bank tx | | 111_617 | | EMCD HA TV2 | | 1.2/1.5/1.8/2.5/3.0V/LVDS | DIN DO4 | | FMCD_HA_TX_p3 | data p3 | | PIN_R21 | | FMOD III TV C | FMCD HA bank tx | 1.2/1.5/1.8/2.5/3.0V/LVDS | DIN Bot | | FMCD_HA_TX_n3 | data n3 | | PIN_P21 | | | FMCD HA bank tx | 1.2/1.5/1.8/2.5/3.0V/LVDS | L | | FMCD_HA_TX_p4 | data p4 | | PIN_U21 | | | FMCD HA bank tx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCD_HA_TX_n4 | data n4 | | PIN_T21 | | | | | | | | EMOD IIA Land (a) | | | |------------------|--------------------------------|---------------------------|---------| | FMCD_HA_TX_p5 | FMCD HA bank tx
data p5 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_G20 | | FMCD_HA_TX_n5 | FMCD HA bank tx data n5 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN F20 | | | FMCD HA bank tx | 1.2/1.5/1.8/2.5/3.0V/LVDS | _ | | FMCD_HA_TX_p6 | data p6 FMCD HA bank tx | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_B13 | | FMCD_HA_TX_n6 | data n6 FMCD HA bank tx | 1.2/1.3/1.6/2.3/3.0V/LVD3 | PIN_A13 | | FMCD_HA_TX_p7 | data p7 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_N16 | | FMCD_HA_TX_n7 | FMCD HA bank tx data n7 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_M15 | | FMCD_HA_TX_p8 | FMCD HA bank tx
data p8 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_D14 | | FMCD_HA_TX_n8 | FMCD HA bank tx data n8 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_C13 | | FMCD_HA_TX_p9 | FMCD HA bank tx data p9 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_K16 | | FMCD_HA_TX_n9 | FMCD HA bank tx data n9 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_J16 | | FMCD_HA_TX_p10 | FMCD HA bank tx data p10 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_T22 | | FMCD_HA_TX_n10 | FMCD HA bank tx data n10 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_R22 | | FMCD_HA_RX_CLK_p | FMCD HA bank rx clock positive | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_E8 | | FMCD_HA_RX_CLK_n | FMCD HA bank rx clock negative | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_D9 | | FMCD_HA_RX_p0 | FMCD HA bank rx data p0 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_F22 | | FMCD_HA_RX_n0 | FMCD HA bank rx
data n0 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_F21 | | FMCD_HA_RX_p1 | FMCD HA bank rx
data p1 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_E15 | | FMCD_HA_RX_n1 | FMCD HA bank rx
data n1 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_D15 | | FMCD_HA_RX_p2 | FMCD HA bank rx
data p2 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_H21 | | FMCD_HA_RX_n2 | FMCD HA bank rx data n2 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_H20 | | FMCD_HA_RX_p3 | FMCD HA bank rx
data p3 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_K15 | | | EMOD IIA kasalasa | | | |------------------|--------------------------------|---------------------------|----------| | FMCD_HA_RX_n3 | FMCD HA bank rx data n3 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_J15 | | FMCD_HA_RX_p4 | FMCD HA bank rx data p4 |
1.2/1.5/1.8/2.5/3.0V/LVDS | PIN V19 | | | FMCD HA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | | | FMCD_HA_RX_n4 | data n4 FMCD HA bank rx | | PIN_U20 | | FMCD_HA_RX_p5 | data p5 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_H22 | | FMCD_HA_RX_n5 | FMCD HA bank rx data n5 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_G22 | | FMCD_HA_RX_p6 | FMCD HA bank rx
data p6 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN F14 | | FMCD HA RX n6 | FMCD HA bank rx data n6 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN E14 | | FMCD_HA_RX_p7 | FMCD HA bank rx data p7 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN N22 | | FMCD HA RX n7 | FMCD HA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN M22 | | FMCD_HA_RX_p8 | FMCD HA bank rx data p8 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_C16 | | FMCD_HA_RX_n8 | FMCD HA bank rx data n8 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN C15 | | FMCD_HA_RX_p9 | FMCD HA bank rx data p9 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN K21 | | FMCD_HA_RX_n9 | FMCD HA bank rx data n9 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_J21 | | FMCD_HA_RX_p10 | FMCD HA bank rx data p10 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN Y17 | | FMCD_HA_RX_n10 | FMCD HA bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN W17 | | FMCD_HB_TX_CLK_p | FMCD HB bank tx clock positive | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AU14 | | FMCD_HB_TX_CLK_n | FMCD HB bank tx clock negative | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AV14 | | FMCD_HB_TX_p0 | FMCD HB bank tx data p0 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AE15 | | FMCD_HB_TX_n0 | FMCD HB bank tx data n0 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AE16 | | FMCD_HB_TX_p1 | FMCD HB bank tx
data p1 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AJ14 | | FMCD_HB_TX_n1 | FMCD HB bank tx data n1 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AK15 | | | EMOD LID beautite | | | |-----------------------------|----------------------------------|---------------------------|-------------------| | FMCD_HB_TX_p2 | FMCD HB bank tx
data p2 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AN15 | | FMCD HB TX n2 | FMCD HB bank tx data n2 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN AM16 | | | FMCD HB bank tx | 1.2/1.5/1.8/2.5/3.0V/LVDS | _ | | FMCD_HB_TX_p3 | data p3 FMCD HB bank tx | | PIN_AT14 | | FMCD_HB_TX_n3 | data n3 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AU13 | | FMCD HB TX p4 | FMCD HB bank tx data p4 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN AW13 | | FMCD_HB_TX_n4 | FMCD HB bank tx
data n4 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN AW14 | | | FMCD HB bank tx | 1.2/1.5/1.8/2.5/3.0V/LVDS | _ | | FMCD_HB_TX_p5 FMCD_HB_TX_n5 | data p5 FMCD HB bank tx data n5 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AK14 PIN_AL14 | | FMCD_HB_TX_p6 | FMCD HB bank tx data p6 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_BC16 | | FMCD_HB_TX_n6 | FMCD HB bank tx
data n6 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_BD16 | | FMCD_HB_TX_p7 | FMCD HB bank tx
data p7 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AY13 | | FMCD_HB_TX_n7 | FMCD HB bank tx data n7 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_BA13 | | FMCD_HB_TX_p8 | FMCD HB bank tx
data p8 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AF16 | | FMCD_HB_TX_n8 | FMCD HB bank tx
data n8 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AG15 | | FMCD_HB_TX_p9 | FMCD HB bank tx data p9 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AR15 | | FMCD_HB_TX_n9 | FMCD HB bank tx
data n9 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AR14 | | FMCD_HB_TX_p10 | FMCD HB bank tx
data p10 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_BB14 | | FMCD_HB_TX_n10 | FMCD HB bank tx data n10 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_BB15 | | FMCD_HB_RX_CLK_p | FMCD HB bank rx clock positive | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AH13 | | FMCD_HB_RX_CLK_n | FMCD HB bank rx clock negative | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AJ13 | | FMCD_HB_RX_p0 | FMCD HB bank rx
data p0 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AG16 | | | EMCD LID books my | I | | |----------------|----------------------------|---------------------------|----------| | FMCD_HB_RX_n0 | FMCD HB bank rx data n0 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AF17 | | FMCD_HB_RX_p1 | FMCD HB bank rx
data p1 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN AG14 | | | FMCD HB bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | _ | | FMCD_HB_RX_n1 | data n1 | | PIN_AH15 | | FMCD_HB_RX_p2 | FMCD HB bank rx data p2 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AM14 | | FMCD_HB_RX_n2 | FMCD HB bank rx
data n2 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN AN14 | | | FMCD HB bank rx | | | | FMCD_HB_RX_p3 | data p3 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AT15 | | FMCD_HB_RX_n3 | FMCD HB bank rx data n3 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN AU15 | | FMCD_HB_RX_p4 | FMCD HB bank rx
data p4 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN AY15 | | FMCD_HB_RX_n4 | FMCD HB bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN BA15 | | | FMCD HB bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | _ | | FMCD_HB_RX_p5 | data p5 FMCD HB bank rx | | PIN_AE17 | | FMCD_HB_RX_n5 | data n5 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AE18 | | FMCD_HB_RX_p6 | FMCD HB bank rx
data p6 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AP15 | | FMCD_HB_RX_n6 | FMCD HB bank rx
data n6 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AR16 | | FMCD_HB_RX_p7 | FMCD HB bank rx
data p7 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_BC13 | | FMCD_HB_RX_n7 | FMCD HB bank rx data n7 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN BD13 | | FMCD_HB_RX_p8 | FMCD HB bank rx
data p8 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN AL15 | | FMCD HB RX n8 | FMCD HB bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AL16 | | FMCD_HB_RX_p9 | FMCD HB bank rx
data p9 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AU12 | | FMCD HB RX n9 | FMCD HB bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_AV13 | | FMCD_HB_RX_p10 | FMCD HB bank rx data p10 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN BC14 | | | FMCD HB bank rx | 1.2/1.5/1.8/2.5/3.0V/LVDS | _ | | FMCD_HB_RX_n10 | data n10 | <u> </u> | PIN_BD14 | | FMCD_SCL | FMCD serial clock | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN A20 | |--------------------|-------------------|-------------------------------|----------| | FMCD SDA | | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN B20 | | FMCD_GA0 | FMCD GA0 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_C22 | | FMCD_GA1 | FMCD GA1 | 1.2/1.5/1.8/2.5/3.0V/LVDS | PIN_C21 | | FINICD_GAT | FMCD card to | 1.2/1.3/1.6/2.3/3.0 V/L V D 3 | FIN_GZ1 | | EMCD CLK Mac0 | | 1.2/1.5/1.8/2.5/3.0V/LVDS | DIN V4C | | FMCD_CLK_M2C_p0 | carrier clock p0 | | PIN_Y16 | | EMCD CLK Mac0 | FMCD card to | 1.2/1.5/1.8/2.5/3.0V/LVDS | DIN WAC | | FMCD_CLK_M2C_n0 | carrier clock n0 | | PIN_W16 | | EMCD CLK Mac4 | FMCD card to | 1.2/1.5/1.8/2.5/3.0V/LVDS | DIN DO | | FMCD_CLK_M2C_p1 | carrier clock p1 | | PIN_B8 | | | FMCD card to | 1.2/1.5/1.8/2.5/3.0V/LVDS | DIN 40 | | FMCD_CLK_M2C_n1 | carrier clock n1 | | PIN_A8 | | | FMCD DP | 1.4-V PCML / LVDS | DIN ADA | | FMCD_GBTCLK_M2C_p(| | | PIN_AB6 | | | FMCD DP | 1.4-V PCML / LVDS | DIM MC | | FMCD_GBTCLK_M2C_p1 | | | PIN_V6 | | | FMCD Transmitter | 1.4-V PCML | DINI XVA | | FMCD_DP_C2M_p0 | DP 0 | | PIN_W4 | | | FMCD Receiver DP | 1.4-V PCML | DD1 4 D2 | | FMCD_DP_M2C_p0 | 0 | | PIN_AB2 | | | FMCD Transmitter | 1.4-V PCML | | | FMCD_DP_C2M_p1 | DP 1 | | PIN_U4 | | | FMCD Receiver DP | 1 4-V PCMI | DD 7 770 | | FMCD_DP_M2C_p1 | • | | PIN_Y2 | | | FMCD Transmitter | 1.4-V PCML | DD 1 D 1 | | FMCD_DP_C2M_p2 | DP 2 | I.4 V I GIIIE | PIN_R4 | | | FMCD Receiver DP | 1.4-V PCML | | | FMCD_DP_M2C_p2 | 2 | 1.4-V I GIVIE | PIN_V2 | | | FMCD Transmitter | 1.4-V PCML | | | FMCD_DP_C2M_p3 | DP 3 | 1.4-V FCIVIL | PIN_N4 | | | FMCD Receiver DP | 1.4-V PCML | | | FMCD_DP_M2C_p3 | 3 | 1.4-V PCIVIL | PIN_T2 | | | FMCD Transmitter | 1.4-V PCML | | | FMCD_DP_C2M_p4 | DP 4 | 1.4-V FUNL | PIN_J4 | | | FMCD Receiver DP | 1.4-V PCML | | | FMCD_DP_M2C_p4 | 4 | 1.4-V FUNL | PIN_M2 | | | FMCD Transmitter | 4 4 V DOM | | | FMCD_DP_C2M_p5 | DP 5 | 1.4-V PCML | PIN_K6 | | | FMCD Receiver DP | 4.4.7. DOM | | | FMCD_DP_M2C_p5 | 5 | 1.4-V PCML | PIN_K2 | | | FMCD Transmitter | | | | FMCD_DP_C2M_p6 | DP 6 | 1.4-V PCML | PIN_H6 | | | - | · | | | FMCD_DP_M2C_p6 | FMCD Rec | ceiver DP 1 | .4-V PCML | PIN_H2 | |----------------|-----------|-------------|-----------|--------| | FMCD_DP_C2M_p7 | FMCD Trai | nsmitter 1 | .4-V PCML | PIN_G4 | | FMCD_DP_M2C_p7 | FMCD Red | ceiver DP 1 | .4-V PCML | PIN_F2 | | FMCD_DP_C2M_p8 | FMCD Trai | nsmitter 1 | .4-V PCML | PIN_E4 | | FMCD_DP_M2C_p8 | FMCD Red | ceiver DP 1 | .4-V PCML | PIN_D2 | | FMCD_DP_C2M_p9 | FMCA Trai | nsmitter 1 | .4-V PCML | PIN_D6 | | FMCD_DP_M2C_p9 | FMCD Red | ceiver DP 1 | .4-V PCML | PIN_C4 | ## Additional Information ## **Getting Help** Here are the addresses where you can get help if you encounter problems: ■ Terasic Technologies 9F., No.176, Sec.2, Gongdao 5th Rd, East Dist, HsinChu City, Taiwan, 30070 Email: support@terasic.com Web: www.terasic.com TR5 Web: tr5.terasic.com ## **Revision History** | Date | Version | Changes | |---------|-------------------|---| | 2016.10 | First publication | | | 2016.12 | V1.0.1 | Modify Section 2.8 FMC Part | | 2016.12 | V1.0.2 | Add AB device information | | 2017.01 | V1.0.3 | Add FMC don't support bidirectional LVDS note | | 2017.02 | V1.0.4 | Modify Table2-7 FMC component infromations |