US Headquarters 2950 Red Hill Ave, Costa Mesa California, USA 92626 Office: 714.913.2200 Fax: 714.913.2202 www.vikingtechnology.com # **Datasheet for:** # **SDHC SD Card** PSSD3xxxxCxxxxxE # **Legal Information** Copyright© 2018 Sanmina Corporation. All rights reserved. The information in this document is proprietary and confidential to Sanmina Corporation. No part of this document may be reproduced in any form or by any means or used to make any derivative work (such as translation, transformation, or adaptation) without written permission from Sanmina. Sanmina reserves the right to revise this documentation and to make changes in content from time to time without obligation on the part of Sanmina to provide notification of such revision or change. Sanmina provides this documentation without warranty, term or condition of any kind, either expressed or implied, including, but not limited to, expressed and implied warranties of merchantability, fitness for a particular purpose, and non-infringement. While the information contained herein is believed to be accurate, such information is preliminary, and should not be relied upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are made. In no event will Sanmina be liable for damages arising directly or indirectly from any use of or reliance upon the information contained in this document. Sanmina may make improvements or changes in the product(s) and/or the program(s) described in this documentation at any time. Sanmina, Viking Technology, Viking Modular Solutions, and the Viking logo are trademarks of Sanmina Corporation. Other company, product or service names mentioned herein may be trademarks or service marks of their respective owners. # **Revision History** | Date | Revision | Description | Checked by | |---------|----------|-------------------------------------|------------| | 2/21/18 | Α | Initial release with revised format | Ordering Information for the SDHC SD Card | VikingPart# | Interface | Temp | GB | Client/Ent | NAND | |------------------|-----------|------------|--------------|------------|--------------| | VTSD3032GCCBMTLE | SD Card | (0to+70'c) | 32GB (SDHC) | Ent | TSB 15nm MLC | | VTSD3064GCCAMTLE | SD Card | (0to+70'c) | 64GB (SDXC) | Ent | TSB 15nm MLC | | VTSD3128GCCZMTLE | SD Card | (0to+70'c) | 128GB (SDXC) | Ent | TSB 15nm MLC | #### Notes: - 1. Contact Viking for availability date - 2. The lowercase letters x,y and z are wildcard characters that indicate product or customer specific information - 3. Refer to the Viking part number coversheet or PN decoder for details. - 4. Based on FLASH Entry SD 3.0 Toshiba MLC NAND SDHC, XC, UHS-?/U3, class10 # **Table of Contents** | 1 | INTRODUCTION | 8 | |--|--|--| | 1.1 | FEATURES | 8 | | 2 | SD CARD STANDARDS COMPATIBILITY | 9 | | 3 | PHYSICAL CHARACTERISTICS | 9 | | 3.1 | Environmental Characteristics | 9 | | 3.2 | Physical Characteristics | 10 | | 4 | ELECTRICAL INTERFACE | 10 | | 4.1 | Pin Assignment | 10 | | 4.2 4.2.1 | SD Card Bus Topology SD Bus Mode protocol | 11
12 | | 4.3 | Initialization | 18 | | 4.4.1 | DC Characteristics AC Characteristics (Default Speed) AC Characteristics (High Speed) | 22
22
23
25
Error! Bookmark not defined.
Error! Bookmark not defined. | | 5 | CARD INTERNAL INFORMATION | 32 | | 5.1 | Security Information | 32 | | 5.2
5.2.2
5.2.3
5.2.4
5.2.5
5.2.5
5.2.6
5.2.7 | CID Register CSD Status CSD Status CSD Status CSD Status CSD Switch Function Status | 32
33
34
34
36
36
36
36
36
38
39 | | 5.3.1 | | 40
41 | | 5.3.2
5.3.3 | · | 41
41 | | | 5.3.4
5.3.5 | Data of the logical format of a 64GB Card Data of the logical format of a 32GB Card | 41
41 | |---|----------------|---|----------| | 6 | SD | SPECIFICATION COMPLIANCE | 41 | | 7 | RE | LIABILITY GUIDANCE | 42 | | R | SD | CARD MECHANICAL DIMENSIONS | 11 | # **Table of Tables** | Table 1-1: Features | | | | | |---|------------------------------|--|--|--| | Table 4-1: SD Card Pin Assignment | 11 | | | | | Table 4-2: SD Mode Command Set (+ = Implemented, - = Not Implemented) | ented) 13 | | | | | Table 4-3: SPI Mode Command Set (+ = Implemented, - = Not Implemented, - | ented) 16 | | | | | Table 4-4:S18R and S18A Combinations | | | | | | Table 4-5: Absolute Maximum Conditions | | | | | | Table 4-6: DC Characteristics | 23 | | | | | Table 4-7: Bus Operating Conditions - Signal Line's Load | Error! Bookmark not defined. | | | | | Table 4-8: Threshold Level 1.8V Signaling | Error! Bookmark not defined. | | | | | Table 4-9: Threshold Level 1.8V Signaling | Error! Bookmark not defined. | | | | | Table 4-10: Bus Timing - Parameters Values (Default Speed) | Error! Bookmark not defined. | | | | | Table 4-11: Bus Timing - Parameters Values (High Speed) | Error! Bookmark not defined. | | | | | Table 4-12: Clock Signal Timing of SDR104, SDR50, SDR25, SDR12 | 28 | | | | | Table 4-13: Clock input Timing of SDR104, SDR50, SDR25, SDR12 | 29 | | | | | Table 4-14: Output Timing of Fixed Data Window (SDR50, SDR25, SDR1 | 2)29 | | | | | Table 4-15: Output Timing of Variable Data Window (SDR104) | 30 | | | | | Table 4-16: Clock Signal Timing of DDR50 | | | | | | Table 4-17: BUS Timings – Parameters Values (DDR50 mode) | 31 | | | | | Table 5-1: SD card Registers | | | | | | Table 5-2: OCR register definition | | | | | | Table 5-3: CID register | | | | | | Table 5-4: CSD register | | | | | | Table 5-5: The SCR Fields | 36 | | | | | Table 5-6: Card Status | | | | | | Table 5-7: SD Status | | | | | | Table 5-8: Switch Function Status | 39 | | | | | Table 5-9: SD Card capacities | | | | | | Table 5-10: SD Card System information | 41 | | | | | | | | | | | Table of Figures | | | | | | Table of Figures | | | | | | Figure 1-1: Top View | 9 | | | | | Figure 3-1: Write Protect Tab Polarity (Front View) | 10 | | | | | Figure 4-1: SD Card Pin Assignment (Back view of the Card) | 11 | | | | | Figure 4-2: Bus Connection Diagram (SD Mode) | | | | | | Figure 4-3: Bus Connection Diagram (SPI Mode) | | | | | | Figure 4-4: UHS-I Host Initialization Flow Chart | 18 | | | | | Figure 4-5: ACMD41 Timing Followed by Signal Voltage Switch Sequence | 919 | | | | | Figure 4-6: Signal Voltage Switch Sequence | 21 | | | | | Figure 4-7: SD Card Connection Diagram | 22 | | | | | Figure 4-8: Card Input Timing (Default Speed Mode) | | | | | | Figure 4-9: Card Output Timing (Default Speed Mode) | | | | | | Figure 4-10: Card Input Timing (High Speed Card) | | | | | | Figure 4-11: Card Output Timing (High Speed Card) Error! Bookmark not | | | | | | Figure 4-12: Clock Signal Timing Error! Bookmark not defi | | | | | | Figure 4-13: Clock Input Timing | 28 | | | | | Figure 4-14: Output Timing of Fixed Window | 29 | | | | | Figure 4-15: Output Timing of Variable Window | | | | | | Figure 4-16: Clock Signal Timing | 30 | | | | | Figure 4-17: Timing Diagram DAT Inputs/Outputs Referenced to CLK in D | DR50 Mode 31 | | | | # 1 Introduction This data sheet describes the specifications of the SDHC Card, a Memory Card of Small and Thin with SDMI compliant Security method. (SDMI: Secure Digital Music Initiative) Contents in the Card can be protected by CPRM based security. This contents security can be accomplished by SDHC Card, host, and security application software combinations. # 1.1 FEATURES **Table 1-1: Features** | Media Format | | | | | |--|---|--|--|--| | SD Memory Card
Standard Security Functions | Compliant with the SD Memory Card Standard Ver. 4.20 SD Security Specification Ver.3.00 Compliant (CPRM Based) *CPRM: Contents Protection for Recording Media Specification | | | | | Logical Format | SD File System Specification Ver.3.00 Compliant SDHC Card DOS-FAT32 | | | | | Electrical Features | | | | | | Operating Voltage SD Interface | VDD = 2.7V(min), 3.3V(Typ), 3.6V(max) SD Card Interface (SD: 4 or 1bit) SPI Mode Compatible Compliant with the SD Physical layer Ver. 4.20 | | | | | Physical Features Physical Package size /Mass | L: 32, W: 24, T: 2.1 (mm), Weight: 2g (typ.) SD Physical Layer Specification Ver.4.20 Compliant Case Material PC+ABS | | | | | Durability RoHS | Compliant with SD Physical Layer Specification Ver.4.20 and Standard Size SD Card Mechanical Addendum Version 4.20. Compliant with RoHS regulations (DIRECTIVE 2002/95/EU) | | | | Figure 1-1: Top View # 2 SD Card Standards Compatibility This SD Memory Card Specification is compliant with: - PHYSICAL LAYER SPECIFICATION Ver.4.20 (Part1) (Except for Mechanical Specification) - FILE SYSTEM SPECIFICATION Ver.3.00. (Part2) - SECURITY SPECIFICATION Ver.3.00. (Part3) - Standard Size SD Card Mechanical Addendum Version 4.10 # 3 Physical Characteristics # 3.1 Environmental Characteristics The standard Operation Conditions are: - Absolute Maximum Temperature Range Ta = -25 to +85°C - Humidity less than RH = 95 %, Non condensed Ta = 25°C The standard Storage Conditions are: - Maximum Temperature Range: Tstg = -40 to +85°C - Humidity less than RH = 93%, Non condensed Ta = 40°C Datasheet: PSSD3xxxxCxxxxxE SDHC SD Cards Page 9 # 3.2 Physical Characteristics Mechanical Write Protect Switch A
mechanical sliding tab on the side of the card can be used as a write protect switch. The host system shall be responsible for this function. The card is in a "Write Protected" status when the tab is located on the "Lock " position. The host system shall not write nor format the card in this status. The card is in "Write Enabled" status when the tab is moved to the opposite position (Un-Lock). (Please refer the figures below for the tab polarity.) Please slide the tab until a dead end (stopped position). The tab is set on the "Write Enabled" position when it is shipped. Figure 3-1: Write Protect Tab Polarity (Front View) # 4 Electrical Interface # 4.1 Pin Assignment The table below describes the pin assignment of the SDHC card. The following figure describes the pin assignment of the SDHC card. Please refer the detail descriptions by SD Card Physical Layer Specification. Figure 4-1: SD Card Pin Assignment (Back view of the Card) **Table 4-1: SD Card Pin Assignment** | | SD Mode | | | | SPI N | Mode | |-----|-------------|---------|------------------------------|------|---------|--------------------------------| | Pin | Name | IO Type | Description | Name | ІО Туре | Description | | 1 | CD/
DAT3 | I/O/ PP | Card Detect/ Data Line[Bit3] | cs | I | Chip Select
(Negative True) | | 2 | CMD | PP | Command/Response | DI | I | Data In | | 3 | Vss1 | S | Ground | Vss | S | Ground | | 4 | Vdd | S | Supply Voltage | Vdd | S | Supply Voltage | | 5 | CLK | I | Clock | SCLK | I | Clock | | 6 | Vss2 | S | Ground | Vss2 | S | Ground | | 7 | DAT0 | I/O/PP | Data Line[Bit0] | DO | O/PP | Data Out | | 8 | DAT1 | I/O/PP | Data Line[Bit1] | RSV | _ | Reserved(*) | | 9 | DAT2 | I/O/PP | Data Line[Bit2] | RSV | _ | Reserved(*) | #### Notes: S: Power Supply O: Output using push-pull drivers # 4.2 SD Card Bus Topology The device supports two alternative communication protocols: SD and SPI Bus Mode. It is as same as standard SD memory card. Host System can choose either one of modes. Same Data of the device can read and write by both modes. SD Mode allows the 4-bit high performance data transfer. SPI Mode allows easy and common interface for SPI channel. The disadvantage of this mode is loss of performance, relatively to the SD mode. I: Input PP: I/O using push-pull drivers ^(*) These signals should be pulled up by host side with 10-100k ohm resistance in the SPI Mode. # 4.2.1 SD Bus Mode protocol The SD bus allows the dynamic configuration of the number of data line from 1 to 4 Bidirectional data signal. After power up by default, the Device will use only DATO. After initialization, host can change the bus width. Multiplied SD cards connections are available to the host. Common VDD, VSS and CLK signal connections are available in the multiple connections. However, Command, Respond and Data lined (DATO-DAT3) shall be divided for each card from host. This feature allows easy tradeoff between hardware cost and system performance. Communication over the SD bus is based on command and data bit stream initiated by a start bit and terminated by stop bit. ### Command: Commands are transferred serially on the CMD line. A command is a token to starts an operation from host to the card. Commands are sent to an addressed single card (addressed Command) or to all connected cards (Broad cast command). #### Response: Responses are transferred serially on the CMD line. A response is a token to answer to a previous received command. Responses are sent from an addressed single card or from all connected cards. #### Data: Data can be transfer from the card to the host or vice versa. Data is transferred via the data lines. Figure 4-2: Bus Connection Diagram (SD Mode) CLK Host card Clock signal CMD Bi-directional Command/ Response Signal DAT0 - DAT3 4 Bi-directional data signal VDD Power supply VSS GND Table 4-2: SD Mode Command Set (+ = Implemented, - = Not Implemented) | CMD
Index | Abbreviation | Implementation | Note | |--------------|----------------------|----------------|----------------------------------| | CMD0 | GO_IDLE_STATE | + | | | CMD2 | ALL_SEND_CID | + | | | CMD3 | SEND_RELATIVE_ADDR | + | | | CMD4 | SET_DSR | - | DSR Register is not implemented. | | CMD6 | SWITCH_FUNC | + | | | CMD7 | SELECT/DESELECT_CARD | + | | | CMD8 | SEND_IF_COND | + | | | CMD9 | SEND_CSD | + | | | CMD10 | SEND_CID | + | | | CMD11 | VOLTAGE_SWITCH | + | UHS-I mode | | CMD12 STOP_TRANSMISSION + CMD13 SEND_STATUS + CMD15 GO_INACTIVE_STATE + CMD16 SET_BLOCKLEN + CMD17 READ_SINGLE_BLOCK + CMD18 READ_MULTIPLE_BLOCK + CMD19 SEND_TUNING_PATTERN + UHS-I mode CMD20 SPEED_CLASS_CONTROL + For SDHC/SDXC CMD23 SET_BLOCK_COUNT + For SDHC/SDXC CMD24 WRITE_BLOCK + CMD24 CMD25 WRITE_MULTIPLE_BLOCK + CMD26 CMD26 Reserved for Manufacturer + CMD27 CMD28 SET_WRITE_PROT - Internal Write Protection is not implemented. CMD30 SEND_WRITE_PROT - Internal Write Protection is not implemented. CMD31 ERASE_WR_BLK_START + CMD36 CMD32 ERASE_WR_BLK_END + This command is not specified. CMD33 ERASE + This command is not specified. CMD42< | CMD
Index | Abbreviation | Implementation | Note | |---|--------------|---------------------------|----------------|---| | CMD15 GO_INACTIVE_STATE + CMD16 SET_BLOCKLEN + CMD17 READ_SINGLE_BLOCK + CMD18 READ_MULTIPLE_BLOCK + CMD19 SEND_TUNING_PATTERN + UHS-I mode CMD20 SPED_CLASS_CONTROL + For SDHC/SDXC CMD23 SET_BLOCK_COUNT + For SDHC/SDXC CMD24 WRITE_BLOCK + CMD26 CMD25 WRITE_MULTIPLE_BLOCK + CMD27 CMD26 Reserved for Manufacturer + CMD27 CMD27 PROGRAM_CSD + Internal Write Protection is not implemented. CMD28 SET_WRITE_PROT - Internal Write Protection is not implemented. CMD30 SEND_WRITE_PROT - Internal Write Protection is not implemented. CMD31 ERASE_WR_BLK_END + + CMD32 ERASE_WR_BLK_END + + CMD33 ERASE + + CMD42 LOCK_UNLOCK + + + <td>CMD12</td> <td>STOP_TRANSMISSION</td> <td>+</td> <td></td> | CMD12 | STOP_TRANSMISSION | + | | | CMD16 SET_BLOCKLEN + CMD17 READ_SINGLE_BLOCK + CMD18 READ_MULTIPLE_BLOCK + CMD19 SEND_TUNING_PATTERN + CMD20 SPEED_CLASS_CONTROL + CMD23 SET_BLOCK_COUNT + CMD24 WRITE_BLOCK + CMD25 WRITE_MULTIPLE_BLOCK + CMD26 Reserved for Manufacturer + CMD27 PROGRAM_CSD + CMD28 SET_WRITE_PROT - CMD29 CLR_WRITE_PROT - CMD30 SEND_WRITE_PROT - CMD31 ERASE_WR_BLK_END + CMD32 ERASE_WR_BLK_END + CMD33 ERASE_WR_BLK_END + CMD42 LOCK_UNLOCK + CMD42 LOCK_UNLOCK + CMD56 GEN_CMD + This command is not specified. CMD60 Reserved for Manufacturer + + CMD61 Reserved for Manufacturer < | CMD13 | SEND_STATUS | + | | | CMD17 READ_SINGLE_BLOCK + CMD18 READ_MULTIPLE_BLOCK + CMD19 SEND_TUNING_PATTERN + UHS-I mode CMD20 SPEED_CLASS_CONTROL + For SDHC/SDXC CMD23 SET_BLOCK_COUNT + CMD24 CMD24 WRITE_BLOCK + CMD25 WRITE_MULTIPLE_BLOCK + CMD26 Reserved for Manufacturer + CMD27 PROGRAM_CSD + CMD28 SET_WRITE_PROT - CMD29 CLR_WRITE_PROT - CMD30 SEND_WRITE_PROT - CMD31 ERASE_WR_BLK_START + CMD32 ERASE_WB_BLK_START + CMD33 ERASE + CMD34 LOCK_UNLOCK + CMD42 LOCK_UNLOCK + CMD56 GEN_CMD + This command is not specified. CMD60 Reserved for Manufacturer + ACMD6 CMD61 Reserved for Manufacturer + | CMD15 | GO_INACTIVE_STATE | + | | | CMD18 READ_MULTIPLE_BLOCK + CMD19 SEND_TUNING_PATTERN + UHS-I mode CMD20 SPEED_CLASS_CONTROL + For SDHC/SDXC CMD23 SET_BLOCK_COUNT + CMD24 WRITE_BLOCK + CMD24 WRITE_BLOCK + CMD26 WRITE_MULTIPLE_BLOCK + CMD25 WRITE_MULTIPLE_BLOCK + CMD26 Reserved for Manufacturer + CMD27 PROGRAM_CSD + CMD28 SET_WRITE_PROT - Internal Write Protection is not implemented. CMD29 CLR_WRITE_PROT - Internal Write Protection is not implemented. CMD30 SEND_WRITE_PROT - Internal Write Protection is not implemented. CMD32 ERASE_WR_BLK_START + + CMD32 ERASE_WR_BLK_END + + CMD32 ERASE_WR_BLK_END + + CMD42 LOCK_UNLOCK + CMD42 LOCK_UNLOCK + This command is not specified. CMD55 APP_CMD + This command is not specified. | CMD16 | SET_BLOCKLEN | + | | | CMD19 SEND_TUNING_PATTERN + UHS-I mode CMD20 SPEED_CLASS_CONTROL + For SDHC/SDXC CMD23 SET_BLOCK_COUNT + + CMD24 WRITE_BLOCK + + CMD25 WRITE_MULTIPLE_BLOCK + + CMD26 Reserved for Manufacturer + + CMD27 PROGRAM_CSD + + CMD28 SET_WRITE_PROT - Internal Write Protection is not implemented. CMD29 CLR_WRITE_PROT - Internal Write Protection is not implemented. CMD30 SEND_WRITE_PROT - Internal Write Protection is not implemented. CMD30 SEND_WRITE_PROT - Internal Write Protection is not implemented. CMD30 SEND_WRITE_PROT - Internal Write Protection is not implemented. CMD30 SERASE_WR_BLK_START + + CMD31 SERASE_WR_BLK_END + + CMD40 LOCK_UNLOCK + + CMD41 APP_CMD + This | CMD17 | READ_SINGLE_BLOCK | + | | | CMD20 SPEED_CLASS_CONTROL + For SDHC/SDXC CMD23 SET_BLOCK_COUNT + + CMD24 WRITE_BLOCK + + CMD25
WRITE_MULTIPLE_BLOCK + + CMD26 Reserved for Manufacturer + + CMD27 PROGRAM_CSD + + CMD28 SET_WRITE_PROT - Internal Write Protection is not implemented. CMD29 CLR_WRITE_PROT - Internal Write Protection is not implemented. CMD30 SEND_WRITE_PROT - Internal Write Protection is not implemented. CMD30 SEND_WRITE_PROT - Internal Write Protection is not implemented. CMD32 ERASE_WR_BLK_START + Internal Write Protection is not implemented. CMD32 ERASE_WR_BLK_START + Internal Write Protection is not implemented. CMD32 ERASE_WR_BLK_START + Internal Write Protection is not implemented. CMD32 ERASE_WR_BLK_END + Internal Write Protection is not implemented. CMD33 ERASE_WR_BLK_END + | CMD18 | READ_MULTIPLE_BLOCK | + | | | CMD23 SET_BLOCK_COUNT + CMD24 WRITE_BLOCK + CMD25 WRITE_MULTIPLE_BLOCK + CMD26 Reserved for Manufacturer + CMD27 PROGRAM_CSD + CMD28 SET_WRITE_PROT - CMD29 CLR_WRITE_PROT - CMD30 SEND_WRITE_PROT - CMD30 SEND_WRITE_PROT - CMD33 ERASE_WR_BLK_START + CMD33 ERASE_WR_BLK_END + CMD38 ERASE + CMD42 LOCK_UNLOCK + CMD42 LOCK_UNLOCK + CMD55 APP_CMD + CMD65 APP_CMD + CMD60 Reserved for Manufacturer + CMD61 Reserved for Manufacturer + CMD62 Reserved for Manufacturer + ACMD6 SET_BUS_WIDTH + ACMD23 SETAUS_MUS_WR_BLOCKS + ACMD23 SET_UR_BLK_ERASE | CMD19 | SEND_TUNING_PATTERN | + | UHS-I mode | | CMD24 WRITE_BLOCK + CMD25 WRITE_MULTIPLE_BLOCK + CMD26 Reserved for Manufacturer + CMD27 PROGRAM_CSD + CMD28 SET_WRITE_PROT - CMD29 CLR_WRITE_PROT - CMD30 SEND_WRITE_PROT - CMD32 ERASE_WR_BLK_START + CMD32 ERASE_WR_BLK_END + CMD33 ERASE_WR_BLK_END + CMD34 LOCK_UNLOCK + CMD42 LOCK_UNLOCK + CMD55 APP_CMD + CMD56 GEN_CMD + This command is not specified. CMD60 Reserved for Manufacturer + + CMD61 Reserved for Manufacturer + + CMD62 Reserved for Manufacturer + + ACMD6 SET_BUS_WIDTH + + ACMD23 SET_WR_BLK_ERASE_COUNT + + ACMD23 SET_WR_BLK_ERASE_COUNT + | CMD20 | SPEED_CLASS_CONTROL | + | For SDHC/SDXC | | CMD25 WRITE_MULTIPLE_BLOCK + CMD26 Reserved for Manufacturer + CMD27 PROGRAM_CSD + CMD28 SET_WRITE_PROT - CMD29 CLR_WRITE_PROT - CMD30 SEND_WRITE_PROT - CMD32 ERASE_WR_BLK_START + CMD32 ERASE_WR_BLK_END + CMD38 ERASE + CMD42 LOCK_UNLOCK + CMD42 LOCK_UNLOCK + CMD55 APP_CMD + CMD60 GEN_CMD + This command is not specified. CMD60 Reserved for Manufacturer + + CMD61 Reserved for Manufacturer + + CMD62 Reserved for Manufacturer + + ACMD6 SET_BUS_WIDTH + + ACMD23 SET_WR_BLK_ERASE_COUNT + ACMD23 SET_WR_BLK_ERASE_COUNT + ACMD41 SD_APP_OP_COND + | CMD23 | SET_BLOCK_COUNT | + | | | CMD26 Reserved for Manufacturer + CMD27 PROGRAM_CSD + CMD28 SET_WRITE_PROT - CMD29 CLR_WRITE_PROT - CMD30 SEND_WRITE_PROT - CMD32 ERASE_WR_BLK_START + CMD33 ERASE_WR_BLK_END + CMD38 ERASE + CMD42 LOCK_UNLOCK + CMD55 APP_CMD + CMD66 GEN_CMD + This command is not specified. CMD60 Reserved for Manufacturer + + CMD61 Reserved for Manufacturer + + CMD62 Reserved for Manufacturer + + ACMD6 SET_BUS_WIDTH + + ACMD23 SEND_NUM_WR_BLOCKS + + ACMD23 SET_WR_BLK_ERASE_COUNT + + ACMD41 SD_APP_OP_COND + + ACMD42 SET_CLR_CARD_DETECT + + ACMD51 | | WRITE_BLOCK | + | | | CMD27 PROGRAM_CSD + CMD28 SET_WRITE_PROT - CMD29 CLR_WRITE_PROT - CMD30 SEND_WRITE_PROT - CMD32 ERASE_WR_BLK_START + CMD33 ERASE_WR_BLK_END + CMD38 ERASE + CMD42 LOCK_UNLOCK + CMD55 APP_CMD + CMD56 GEN_CMD + CMD60 Reserved for Manufacturer + CMD61 Reserved for Manufacturer + CMD62 Reserved for Manufacturer + ACMD6 SET_BUS_WIDTH + ACMD23 SEND_NUM_WR_BLOCKS + ACMD23 SET_WR_BLK_ERASE_COUNT + ACMD41 SD_APP_OP_COND + ACMD42 SET_CLR_CARD_DETECT + ACMD51 SEND_SCR + | CMD25 | WRITE_MULTIPLE_BLOCK | + | | | CMD28 SET_WRITE_PROT - Internal Write Protection is not implemented. CMD29 CLR_WRITE_PROT - Internal Write Protection is not implemented. CMD30 SEND_WRITE_PROT - - CMD32 ERASE_WR_BLK_START + - CMD33 ERASE_WR_BLK_END + - CMD38 ERASE + - CMD42 LOCK_UNLOCK + - CMD42 LOCK_UNLOCK + - CMD55 APP_CMD + - CMD55 APP_CMD + - CMD56 GEN_CMD + This command is not specified. CMD60 Reserved for Manufacturer + - CMD61 Reserved for Manufacturer + - CMD62 Reserved for Manufacturer + - ACMD6 SET_BUS_WIDTH + - ACMD23 SET_WR_BLK_ERASE_COUNT + - ACMD23 SET_WR_BLK_ERASE_COUNT + - | CMD26 | Reserved for Manufacturer | + | | | CMD29 CLR_WRITE_PROT - Internal Write Protection is not implemented. CMD30 SEND_WRITE_PROT - - CMD32 ERASE_WR_BLK_START + - CMD33 ERASE_WR_BLK_END + - CMD38 ERASE + - CMD42 LOCK_UNLOCK + - CMD55 APP_CMD + - CMD56 GEN_CMD + This command is not specified. CMD60 Reserved for Manufacturer + - CMD61 Reserved for Manufacturer + - CMD62 Reserved for Manufacturer + - ACMD6 SET_BUS_WIDTH + - ACMD23 SETATUS + - ACMD23 SET_WR_BLK_ERASE_COUNT + - ACMD41 SD_APP_OP_COND + - ACMD42 SET_CLR_CARD_DETECT + ACMD51 SEND_SCR + | CMD27 | PROGRAM_CSD | + | | | CMD30 SEND_WRITE_PROT - CMD32 ERASE_WR_BLK_START + CMD33 ERASE_WR_BLK_END + CMD38 ERASE + CMD42 LOCK_UNLOCK + CMD55 APP_CMD + CMD66 GEN_CMD + This command is not specified. CMD60 Reserved for Manufacturer + CMD61 Reserved for Manufacturer + CMD62 Reserved for Manufacturer + + ACMD62 Reserved for Manufacturer + ACMD6 SET_BUS_WIDTH + + ACMD23 SET_ATUS + ACMD22 SEND_NUM_WR_BLOCKS + + ACMD23 SET_WR_BLK_ERASE_COUNT + ACMD41 SD_APP_OP_COND + + ACMD42 SET_CLR_CARD_DETECT + ACMD51 SEND_SCR + + + + | CMD28 | SET_WRITE_PROT | - | | | CMD32 ERASE_WR_BLK_START + CMD33 ERASE_WR_BLK_END + CMD38 ERASE + CMD42 LOCK_UNLOCK + CMD55 APP_CMD + CMD56 GEN_CMD + CMD60 Reserved for Manufacturer + CMD61 Reserved for Manufacturer + CMD62 Reserved for Manufacturer + ACMD6 SET_BUS_WIDTH + ACMD13 SD_STATUS + ACMD22 SEND_NUM_WR_BLOCKS + ACMD23 SET_WR_BLK_ERASE_COUNT + ACMD41 SD_APP_OP_COND + ACMD42 SET_CLR_CARD_DETECT + ACMD51 SEND_SCR + | CMD29 | CLR_WRITE_PROT | - | Internal Write Protection is not implemented. | | CMD33 ERASE_WR_BLK_END + CMD38 ERASE + CMD42 LOCK_UNLOCK + CMD55 APP_CMD + CMD56 GEN_CMD + CMD60 Reserved for Manufacturer + CMD61 Reserved for Manufacturer + CMD62 Reserved for Manufacturer + ACMD6 SET_BUS_WIDTH + ACMD13 SD_STATUS + ACMD22 SEND_NUM_WR_BLOCKS + ACMD23 SET_WR_BLK_ERASE_COUNT + ACMD41 SD_APP_OP_COND + ACMD42 SET_CLR_CARD_DETECT + ACMD51 SEND_SCR + | CMD30 | SEND_WRITE_PROT | - | | | CMD38 ERASE + CMD42 LOCK_UNLOCK + CMD55 APP_CMD + CMD56 GEN_CMD + CMD60 Reserved for Manufacturer + CMD61 Reserved for Manufacturer + CMD62 Reserved for Manufacturer + ACMD6 SET_BUS_WIDTH + ACMD13 SD_STATUS + ACMD22 SEND_NUM_WR_BLOCKS + ACMD23 SET_WR_BLK_ERASE_COUNT + ACMD41 SD_APP_OP_COND + ACMD42 SET_CLR_CARD_DETECT + ACMD51 SEND_SCR + | CMD32 | ERASE_WR_BLK_START | + | | | CMD42 LOCK_UNLOCK + CMD55 APP_CMD + CMD56 GEN_CMD + This command is not specified. CMD60 Reserved for Manufacturer + CMD61 Reserved for Manufacturer + CMD62 Reserved for Manufacturer + ACMD62 Reserved for Manufacturer + + ACMD63 SET_BUS_WIDTH + + ACMD13 SD_STATUS + + ACMD22 SEND_NUM_WR_BLOCKS + + ACMD23 SET_WR_BLK_ERASE_COUNT + ACMD41 SD_APP_OP_COND + ACMD41 SD_APP_OP_COND + ACMD42 SET_CLR_CARD_DETECT + ACMD51 SEND_SCR ACMD51 ACMD51 ACMD51 ACMD51 ACMD51 | CMD33 | ERASE_WR_BLK_END | + | | | CMD55 APP_CMD + CMD56 GEN_CMD + This command is not specified. CMD60 Reserved for Manufacturer + CMD61 Reserved for Manufacturer + CMD62 Reserved for Manufacturer + ACMD62 Reserved for Manufacturer + ACMD63 SET_BUS_WIDTH + ACMD13 SD_STATUS + ACMD22 SEND_NUM_WR_BLOCKS + ACMD23 SET_WR_BLK_ERASE_COUNT + ACMD41 SD_APP_OP_COND + ACMD42 SET_CLR_CARD_DETECT + ACMD51 SEND_SCR ACMD52 SEND_SCR + ACMD52 SEND_SCR <td>CMD38</td> <td>ERASE</td> <td>+</td> <td></td> | CMD38 | ERASE | + | | | CMD56 GEN_CMD + This command is not specified. CMD60 Reserved for Manufacturer + CMD61 Reserved for Manufacturer + CMD62 Reserved for Manufacturer + ACMD6 SET_BUS_WIDTH + ACMD13 SD_STATUS + ACMD22 SEND_NUM_WR_BLOCKS + ACMD23 SET_WR_BLK_ERASE_COUNT + ACMD41 SD_APP_OP_COND + ACMD42 SET_CLR_CARD_DETECT + ACMD41 SEND_SCR + | CMD42 | LOCK_UNLOCK | + | | | CMD60 Reserved for Manufacturer + CMD61 Reserved for Manufacturer + CMD62 Reserved for Manufacturer + ACMD6 SET_BUS_WIDTH + ACMD13 SD_STATUS + ACMD22 SEND_NUM_WR_BLOCKS + ACMD23 SET_WR_BLK_ERASE_COUNT + ACMD41 SD_APP_OP_COND + ACMD42 SET_CLR_CARD_DETECT + ACMD51 SEND_SCR + | CMD55 | APP_CMD | + | | | CMD61 Reserved for Manufacturer + CMD62 Reserved for Manufacturer + ACMD6 SET_BUS_WIDTH + ACMD13 SD_STATUS + ACMD22 SEND_NUM_WR_BLOCKS + ACMD23 SET_WR_BLK_ERASE_COUNT + ACMD41 SD_APP_OP_COND + ACMD42 SET_CLR_CARD_DETECT + ACMD51 SEND_SCR + | CMD56 | GEN_CMD | + | This command is not specified. | | CMD62 Reserved for Manufacturer + ACMD6 SET_BUS_WIDTH + ACMD13 SD_STATUS + ACMD22 SEND_NUM_WR_BLOCKS + ACMD23 SET_WR_BLK_ERASE_COUNT + ACMD41 SD_APP_OP_COND + ACMD42 SET_CLR_CARD_DETECT + ACMD51 SEND_SCR + | CMD60 | Reserved for Manufacturer | + | | | ACMD6 SET_BUS_WIDTH + ACMD13 SD_STATUS + ACMD22 SEND_NUM_WR_BLOCKS + ACMD23 SET_WR_BLK_ERASE_COUNT + ACMD41 SD_APP_OP_COND + ACMD42 SET_CLR_CARD_DETECT + ACMD51 SEND_SCR + | CMD61 | Reserved for Manufacturer | + | | | ACMD13 SD_STATUS | CMD62 | Reserved for Manufacturer | + | | | ACMD22 SEND_NUM_WR_BLOCKS + ACMD23 SET_WR_BLK_ERASE_COUNT + ACMD41 SD_APP_OP_COND + ACMD42 SET_CLR_CARD_DETECT + ACMD51 SEND_SCR + | ACMD6 | SET_BUS_WIDTH | + | | | ACMD23 SET_WR_BLK_ERASE_COUNT + ACMD41 SD_APP_OP_COND + ACMD42 SET_CLR_CARD_DETECT + ACMD51 SEND_SCR + | ACMD13 | SD_STATUS | + | | | ACMD41 SD_APP_OP_COND + ACMD42 SET_CLR_CARD_DETECT + ACMD51 SEND_SCR + | ACMD22 | SEND_NUM_WR_BLOCKS | + | | | ACMD42 SET_CLR_CARD_DETECT + ACMD51 SEND_SCR + | ACMD23 | SET_WR_BLK_ERASE_COUNT | + | | | ACMD51 SEND_SCR + | | | + | | | _ | ACMD42 | SET_CLR_CARD_DETECT | + | | | ACMD18 SECURE READ MULTI BLOCK + | ACMD51 | SEND_SCR | + | | | | ACMD18 | SECURE_READ_MULTI_BLOCK | + | | | ACMD25 SECURE_WRITE_MULTI_BLOCK + | ACMD25 | SECURE_WRITE_MULTI_BLOCK | + | | | ACMD26 SECURE_WRITE_MKB + | ACMD26 | SECURE_WRITE_MKB | + | | | ACMD38 SECURE_ERASE + | ACMD38 | SECURE_ERASE | + | | | ACMD43 GET_MKB + | ACMD43 | GET_MKB | + | | | ACMD44 GET_MID + | ACMD44 | GET_MID | + | | | ACMD45 SET_CER_RN1 + | ACMD45 | SET_CER_RN1 | + | | | ACMD46 GET_CER_RN2
+ | ACMD46 | GET_CER_RN2 | + | | | ACMD47 SET_CER_RES2 + | ACMD47 | SET_CER_RES2 | + | | | ACMD48 GET_CER_RES1 + | ACMD48 | GET_CER_RES1 | + | | | ACMD49 CHANGE_SECURE_AREA + Notes: | | CHANGE_SECURE_AREA | + | | Notes: - CMD28, 29 and CMD30 are optional commands. - CMD4 is not implemented because DSR register (Optional Register) is not implemented. - CMD56 is a vender specific command which is not defined in the standard card. ### 6.2.2 SPI Bus mode Protocol The SPI bus allows 1 bit Data line by 2-chanel (Data In and Out). The SPI compatible mode allows the MMC Host systems to use SD card with little change. The SPI bus mode protocol is byte transfers. All the data token are multiples of the bytes (8-bit) and always byte aligned to the CS signal. The advantage of the SPI mode is reducing the host design effort. Especially, the MMC host can be modified with little change. The disadvantage of the SPI mode is the loss of performance versus SD mode. **Caution:** Please use SD Card Specification. DO NOT use MMC Specification. (For example, initialization is achieved by ACMD41, and be careful to Register. Register definition is different, especially CSD Register.) Figure 4-3: Bus Connection Diagram (SPI Mode) CS Card Select Signal CLK Host card Clock signal CMD Bi-directional Command/ Response Signal DataIN Host to card data line DataOUT Host to card data line VDD Power supply VSS GND Table 4-3: SPI Mode Command Set (+ = Implemented, - = Not Implemented) | CMD
Index | Abbreviation | Implementation | Note | |--------------|-------------------|----------------|---| | CMD0 | GO_IDLE_STATE | + | | | CMD1 | SEND_OP_COND | + | Note: DO NOT USE (See UHS-I Host Initialization Flow Chart and the section called "Efficient Data Writing to SD Memory Card" | | CMD6 | SWITCH_FUNC | + | | | CMD8 | SEND_IF_COND | + | | | CMD9 | SEND_CSD | + | | | CMD10 | SEND_CID | + | | | CMD12 | STOP_TRANSMISSION | + | | | CMD13 SEND_STATUS + CMD16 SET_BLOCKLEN + CMD17 READ_SINGLE_BLOCK + CMD24 WRITE_BLOCK + CMD25 WRITE_BLOCK + CMD26 WRITE_BLOCK + CMD27 WROMAUTIPLE_BLOCK + CMD28 WRITE_MOUTIPLE_BLOCK + CMD29 PROGRAM_CSD + CMD29 PROGRAM_CSD + CMD29 CLR_WRITE_PROT - CMD29 CLR_WRITE_PROT - CMD30 SEND_WRITE_PROT - CMD33 ERASE_WR_BLK_START + CMD30 BEASE_WR_BLK_START + CMD33 ERASE_WR_BLK_END + CMD38 ERASE + CMD38 ERASE + CMD42 LOCK_UNLOCK + CMD58 ERAD_CCR + CMD58 AEAD_OCR + CMD59 CRC_ON_OFF + CMD59 | CMD
Index | Abbreviation | Implementation | Note | |---|--------------|---------------------------|----------------|---| | CMD17 READ_SINGLE_BLOCK + CMD18 READ_MULTIPLE_BLOCK + CMD24 WRITE_BLOCK + CMD26 Reserved for Manufacturer + CMD27 PROGRAM_CSD + CMD28 SET_WRITE_PROT - CMD29 CLR_WRITE_PROT - CMD30 SEND_WRITE_PROT - CMD31 ERASE_WR_BLK_START + CMD33 ERASE_WR_BLK_END + CMD33 ERASE_WR_BLK_END + CMD34 LOCK_UNLOCK + CMD35 APP_CMD + CMD56 GEN_CMD + This command is not specified. CMD58 READ_OCR + + CMD58 READ_OCR + + CMD59 CR_ON_OFF + + CMD60 Reserved for Manufacturer + + ACMD23 SET_UR_BLK_ERASE_COUNT + + ACMD25 SET_UR_BLK_ERASE_COUNT + + < | CMD13 | SEND_STATUS | + | | | CMD18 READ_MULTIPLE_BLOCK + CMD24 WRITE_BLOCK + CMD25 WRITE_MULTIPLE_BLOCK + CMD26 Reserved for Manufacturer + CMD27 PROGRAM_CSD + CMD28 SET_WRITE_PROT - CMD29 CLR_WRITE_PROT - CMD30 SEND_WRITE_PROT - CMD33 SERASE_WR_BLK_START + CMD33 ERASE_WR_BLK_END + CMD33 ERASE_WR_BLK_END + CMD34 LOCK_UNLOCK + CMD35 APP_CMD + CMD55 APP_CMD + CMD56 GEN_CMD + This command is not specified. CMD58 READ_OCR + + CMD59 CRC_ON_OFF + + CMD60 Reserved for Manufacturer + + ACMD13 SD_STATUS + + ACMD22 SEND_NUM_WR_BLOCKS + + ACMD23 | CMD16 | SET_BLOCKLEN | + | | | CMD24 WRITE_BLOCK + CMD25 WRITE_MULTIPLE_BLOCK + CMD26 Reserved for Manufacturer + CMD27 PROGRAM_CSD + CMD28 SET_WRITE_PROT - CMD29 CLR_WRITE_PROT - CMD30 SEND_WRITE_PROT - CMD32 ERASE_WR_BLK_START + CMD33 ERASE_WR_BLK_END + CMD33 ERASE_WR_BLK_END + CMD33 ERASE_WR_BLK_END + CMD33 ERASE + CMD34 LOCK_UNLOCK + CMD55 APP_CMD + CMD55 APP_CMD + CMD58 GEN_CMD + This command is not specified. CMD58 CRC_ON_OFF + - CMD58 CRAD_OCR + - CMD59 CRC_ON_OFF + - CMD40 Reserved for Manufacturer + - ACMD21 SET_NUM_WR_BLOCKS | CMD17 | READ_SINGLE_BLOCK | + | | | CMD25 WRITE_MULTIPLE_BLOCK + CMD27 Reserved for Manufacturer + CMD27 PROGRAM_CSD + CMD28 SET_WRITE_PROT - CMD29 CLR_WRITE_PROT - CMD30 SEND_WRITE_PROT - CMD32 ERASE_WR_BLK_START + CMD33 ERASE_WR_BLK_END + CMD38 ERASE_WR_BLK_END + CMD38 ERASE + CMD42 LOCK_UNLOCK + CMD42 LOCK_UNLOCK + CMD55 APP_CMD + CMD56 GEN_CMD + This command is not specified. CMD59 CRC_ON_OFF + CMD60 Reserved for Manufacturer + ACMD59 CRC_ON_OFF + CMD60 Reserved for Manufacturer + ACMD21 SEN_JAUR_MR_BLOCKS + ACMD22 SEN_JNUM_WR_BLOCKS + ACMD23 SET_WB_LK_ERASE_COUNT + ACMD41 SET_OER_CARD_DETECT + | CMD18 | READ_MULTIPLE_BLOCK | + | | | CMD26 Reserved for Manufacturer + CMD27 PROGRAM_CSD + CMD28 SET_WRITE_PROT - CMD29 CLR_WRITE_PROT - CMD30 SEND_WRITE_PROT - CMD30 SEND_WRITE_PROT - CMD30 SEND_WRITE_PROT - CMD32 ERASE_WR_BLK_START + CMD33 ERASE_WR_BLK_END + CMD38 ERASE_WR_BLK_END + CMD38 ERASE + CMD38 ERASE + CMD42 LOCK_UNLOCK + CMD53 APP_CMD + CMD54 APP_CMD + CMD55 APP_CMD + CMD58 READ_OCR + CMD59 CRC_ON_OFF + CMD50 Reserved for Manufacturer + ACMD21 SEND_NUM_WR_BLOCKS + ACMD22 SEND_NUM_WR_BLOCKS + ACMD23 SET_WR_BLK_ERASE_COUNT + | CMD24 | WRITE_BLOCK | + | | | CMD27 PROGRAM_CSD + CMD28 SET_WRITE_PROT - CMD29 CLR_WRITE_PROT - CMD30 SEND_WRITE_PROT - CMD32 ERASE_WR_BLK_START + CMD33 ERASE_WR_BLK_END + CMD38 ERASE + CMD38 ERASE + CMD42 LOCK_UNLOCK + CMD55 APP_CMD + CMD56 GEN_CMD + CMD58 READ_OCR + CMD59 CRC_ON_OFF + CMD59 CRC_ON_OFF + CMD60 Reserved for Manufacturer + ACMD13 SD_STATUS + ACMD22 SEND_NUM_WR_BLOCKS + ACMD23 SET_WR_BLK_ERASE_COUNT + ACMD41 SD_APP_OP_COND + ACMD42 SET_CL_CARD_DETECT + ACMD43 SECURE_WRITE_MULTI_BLOCK + ACMD45 SECURE_WRITE_MUS + | CMD25 | WRITE_MULTIPLE_BLOCK | + | | | CMD28 SET_WRITE_PROT - Internal Write Protection is not implemented. CMD30 SEND_WRITE_PROT - Internal Write Protection is not implemented. CMD30 ERASE_WR_BLK_START + - CMD31 ERASE_WR_BLK_END + - CMD38 ERASE + - CMD42 LOCK_UNLOCK + - CMD55 APP_CMD + - CMD56 GEN_CMD + This command is not specified. CMD58 READ_OCR + - CMD59 CRC_ON_OFF + - CMD59 RESERVED OR + - CMD59 RESERVED OR + - ACMD49 SET_ATTUS + - ACMD40 SEND_NUM_WR_BLOCKS + - ACMD20 SEND_NUM_WR_BLOCKS + - ACMD41 SD_APP_OP_COND + - ACMD42 SET_CR_CARD_DETECT + - ACMD43 S | CMD26 | Reserved for Manufacturer | + | | | CMD29 CLR_WRITE_PROT - Internal Write Protection is not implemented. CMD30 SEND_WRITE_PROT - CMD32 ERASE_WR_BLK_START + CMD33 ERASE_WR_BLK_END + CMD38 ERASE + CMD42 LOCK_UNLOCK + CMD54 APP_CMD + CMD55 APP_CMD + CMD56 GEN_CMD + This command is not specified. CMD58 READ_OCR + + CMD58 READ_OCR + + CMD59 CRC_ON_OFF + + CMD60 Reserved for Manufacturer + + ACMD413 SD_STATUS + + ACMD22 SEND_NUM_WR_BLOCKS + + ACMD23 SET_WB_BLK_ERASE_COUNT + + ACMD41 SD_APP_OP_COND + + ACMD42 SET_CLR_CARD_DETECT + + ACMD43 SECURE_WRITE_MULTI_BLOCK + | CMD27 | PROGRAM_CSD | + | | | CMD30 SEND_WRITE_PROT - CMD32 ERASE_WR_BLK_START + CMD33 ERASE_WR_BLK_END + CMD38 ERASE + CMD42 LOCK_UNLOCK + CMD55 APP_CMD + CMD56 GEN_CMD + CMD58 READ_OCR + CMD59 CRC_ON_OFF + CMD60 Reserved for Manufacturer + ACMD41 SD_STATUS + ACMD22 SEND_NUM_WR_BLOCKS + ACMD23 SET_WR_BLK_ERASE_COUNT + ACMD41 SD_APP_OP_COND + ACMD42 SET_CLR_CARD_DETECT + ACMD45 SECURE_READ_MULTI_BLOCK + ACMD45 SECURE_WRITE_MULTI_BLOCK + ACMD45 SECURE_WRITE_MKB + ACMD46 SEC_MRB + ACMD47 SET_CER_RN1 + ACMD46 SET_CER_RN2 + ACMD47 SET_CER_RES2 + </td <td>CMD28</td> <td>SET_WRITE_PROT</td> <td>-</td> <td></td> | CMD28 | SET_WRITE_PROT | - | | | CMD32 ERASE_WR_BLK_START + CMD33 ERASE_WR_BLK_END + CMD42 LOCK_UNLOCK + CMD55 APP_CMD + CMD56 GEN_CMD + This command is not specified. CMD58 READ_OCR + CMD59 CRC_ON_OFF + CMD59 CRC_ON_OFF + CMD60 Reserved for Manufacturer + ACMD13 SD_STATUS + ACMD13 SD_STATUS + ACMD13 SD_STATUS + ACMD22 SEND_NUM_WR_BLOCKS + ACMD23 SET_WR_BLK_ERASE_COUNT + ACMD23 SET_WR_BLK_ERASE_COUNT + ACMD41 SD_APP_OP_COND + + ACMD42 SET_CLR_CARD_DETECT + ACMD45 SET_CLR_CARD_DETECT + ACMD45 SECURE_READ_MULTI_BLOCK + ACMD45 ACMD45 SECURE_WRITE_MKB + ACMD45 ACMD45 SECURE_WRITE_MKB + ACMD46 ACMD46 SET_MEB + ACMD46 SET_CER_RN1 + ACMD46 SET_CER_RN2 < | CMD29 | CLR_WRITE_PROT | - | Internal Write Protection is not implemented. | | CMD33 ERASE_WR_BLK_END + CMD38 ERASE + CMD42 LOCK_UNLOCK + CMD55 APP_CMD + CMD56 GEN_CMD + CMD57 FREAD_OCR + CMD58 READ_OCR + CMD59 CRC_ON_OFF + CMD60 Reserved for Manufacturer + ACMD13 SD_STATUS + ACMD13 SD_STATUS + ACMD23 SEND_NUM_WR_BLOCKS + ACMD23
SET_WR_BLK_ERASE_COUNT + ACMD23 SET_WR_BLK_ERASE_COUNT + ACMD41 SD_APP_OP_COND + ACMD42 SET_CLR_CARD_DETECT + ACMD43 SECURE_READ_MULTI_BLOCK + ACMD45 SECURE_WRITE_MULTI_BLOCK + ACMD25 SECURE_WRITE_MKB + ACMD46 SEC_WR_ERASE + ACMD40 GET_MIB + ACMD44 GET_MID + ACMD46 GET_CER_RN2 + ACMD47 | CMD30 | SEND_WRITE_PROT | - | | | CMD38 ERASE + CMD42 LOCK_UNLOCK + CMD55 APP_CMD + CMD56 GEN_CMD + This command is not specified. CMD58 READ_OCR + + CMD59 CRC_ON_OFF + + CMD60 Reserved for Manufacturer + + ACMD13 SD_STATUS + + ACMD22 SEND_NUM_WR_BLOCKS + + ACMD23 SET_WR_BLK_ERASE_COUNT + + ACMD23 SET_WR_BLK_ERASE_COUNT + + ACMD41 SD_APP_OP_COND + + ACMD42 SET_CLR_CARD_DETECT + + ACMD43 SET_UR_CARD_DETECT + + ACMD41 SEOURE_READ_MULTI_BLOCK + + ACMD43 SECURE_WRITE_MKB + + ACMD46 SECURE_ERASE + + ACMD43 GET_MKB + + ACMD44 GET_MID + + ACMD45 SET_CER_RN1 + | CMD32 | ERASE_WR_BLK_START | + | | | CMD42 LOCK_UNLOCK + CMD55 APP_CMD + CMD56 GEN_CMD + This command is not specified. CMD58 READ_OCR + + CMD59 CRC_ON_OFF + + CMD60 Reserved for Manufacturer + + ACMD13 SD_STATUS + + ACMD21 SEND_NUM_WR_BLOCKS + + ACMD23 SET_WR_BLK_ERASE_COUNT + + ACMD23 SET_WR_BLK_ERASE_COUNT + + ACMD41 SD_APP_OP_COND + + ACMD42 SET_CLR_CARD_DETECT + + ACMD43 SEND_SCR + + ACMD40 SECURE_READ_MULTI_BLOCK + + ACMD45 SECURE_WRITE_MULTI_BLOCK + + ACMD46 SECURE_ERASE + + ACMD48 SECURE_ERASE + + ACMD49 SET_CER_RN1 + + | CMD33 | ERASE_WR_BLK_END | + | | | CMD55 APP_CMD + This command is not specified. CMD56 GEN_CMD + This command is not specified. CMD58 READ_OCR + + CMD59 CRC_ON_OFF + + CMD60 Reserved for Manufacturer + + ACMD13 SD_STATUS + + ACMD22 SEND_NUM_WR_BLOCKS + + ACMD23 SET_WR_BLK_ERASE_COUNT + + ACMD41 SD_APP_OP_COND + + ACMD41 SD_APP_OP_COND + + ACMD42 SET_CLR_CARD_DETECT + + ACMD41 SEND_SCR + + ACMD43 SECURE_READ_MULTI_BLOCK + + ACMD45 SECURE_WRITE_MKB + + ACMD48 SECURE_ERASE + + ACMD40 GET_MKB + + ACMD44 GET_MID + + ACMD45 SET_CER_RN1 + + ACMD46 GET_CER_RS2 + + | CMD38 | ERASE | + | | | CMD56 GEN_CMD + This command is not specified. CMD58 READ_OCR + + CMD59 CRC_ON_OFF + + CMD60 Reserved for Manufacturer + + ACMD13 SD_STATUS + + ACMD22 SEND_NUM_WR_BLOCKS + + ACMD23 SET_WR_BLK_ERASE_COUNT + + ACMD41 SD_APP_OP_COND + + ACMD42 SET_CLR_CARD_DETECT + + ACMD51 SEND_SCR + + ACMD51 SECURE_READ_MULTI_BLOCK + + ACMD25 SECURE_WRITE_MULTI_BLOCK + + ACMD26 SECURE_WRITE_MKB + + ACMD38 SECURE_ERASE + + ACMD43 GET_MKB + + ACMD44 GET_MID + + ACMD45 SET_CER_RN1 + + ACMD47 SET_CER_RES2 + + ACMD48 GET_CER_RES1 + + <td>CMD42</td> <td>LOCK_UNLOCK</td> <td>+</td> <td></td> | CMD42 | LOCK_UNLOCK | + | | | CMD58 READ_OCR + CMD59 CRC_ON_OFF + CMD60 Reserved for Manufacturer + ACMD13 SD_STATUS + ACMD22 SEND_NUM_WR_BLOCKS + ACMD23 SET_WR_BLK_ERASE_COUNT + ACMD41 SD_APP_OP_COND + ACMD42 SET_CLR_CARD_DETECT + ACMD51 SEND_SCR + ACMD18 SECURE_READ_MULTI_BLOCK + ACMD25 SECURE_WRITE_MULTI_BLOCK + ACMD26 SECURE_WRITE_MKB + ACMD28 SECURE_ERASE + ACMD43 GET_MKB + ACMD44 GET_MID + ACMD45 SET_CER_RN1 + ACMD46 GET_CER_RN2 + ACMD47 SET_CER_RES2 + ACMD48 GET_CER_RES1 + | CMD55 | APP_CMD | + | | | CMD59 CRC_ON_OFF + CMD60 Reserved for Manufacturer + ACMD13 SD_STATUS + ACMD22 SEND_NUM_WR_BLOCKS + ACMD23 SET_WR_BLK_ERASE_COUNT + ACMD41 SD_APP_OP_COND + ACMD42 SET_CLR_CARD_DETECT + ACMD51 SEND_SCR + ACMD18 SECURE_READ_MULTI_BLOCK + ACMD25 SECURE_WRITE_MULTI_BLOCK + ACMD26 SECURE_WRITE_MKB + ACMD38 SECURE_ERASE + ACMD43 GET_MKB + ACMD44 GET_MID + ACMD45 SET_CER_RN1 + ACMD46 GET_CER_RN2 + ACMD47 SET_CER_RES2 + ACMD48 GET_CER_RES1 + | CMD56 | GEN_CMD | + | This command is not specified. | | CMD60 Reserved for Manufacturer + ACMD13 SD_STATUS + ACMD22 SEND_NUM_WR_BLOCKS + ACMD23 SET_WR_BLK_ERASE_COUNT + ACMD41 SD_APP_OP_COND + ACMD42 SET_CLR_CARD_DETECT + ACMD51 SEND_SCR + ACMD18 SECURE_READ_MULTI_BLOCK + ACMD25 SECURE_WRITE_MULTI_BLOCK + ACMD26 SECURE_WRITE_MKB + ACMD38 SECURE_ERASE + ACMD43 GET_MKB + ACMD44 GET_MID + ACMD45 SET_CER_RN1 + ACMD46 GET_CER_RN2 + ACMD47 SET_CER_RES2 + ACMD48 GET_CER_RES1 + | CMD58 | READ_OCR | + | | | ACMD13 SD_STATUS | CMD59 | CRC_ON_OFF | + | | | ACMD22 SEND_NUM_WR_BLOCKS | CMD60 | Reserved for Manufacturer | + | | | ACMD23 SET_WR_BLK_ERASE_COUNT + ACMD41 SD_APP_OP_COND + ACMD42 SET_CLR_CARD_DETECT + ACMD51 SEND_SCR + ACMD18 SECURE_READ_MULTI_BLOCK + ACMD25 SECURE_WRITE_MULTI_BLOCK + ACMD26 SECURE_WRITE_MKB + ACMD38 SECURE_ERASE + ACMD43 GET_MKB + ACMD43 GET_MKB + ACMD44 GET_MID + ACMD45 SET_CER_RN1 + ACMD46 GET_CER_RN2 + ACMD47 SET_CER_RES2 + ACMD48 GET_CER_RES1 + | ACMD13 | SD_STATUS | + | | | ACMD41 SD_APP_OP_COND | ACMD22 | SEND_NUM_WR_BLOCKS | + | | | ACMD42 SET_CLR_CARD_DETECT + ACMD51 SEND_SCR + ACMD18 SECURE_READ_MULTI_BLOCK + ACMD25 SECURE_WRITE_MULTI_BLOCK + ACMD26 SECURE_WRITE_MKB + ACMD38 SECURE_ERASE + ACMD43 GET_MKB + ACMD44 GET_MID + ACMD45 SET_CER_RN1 + ACMD46 GET_CER_RN2 + ACMD47 SET_CER_RES2 + ACMD48 GET_CER_RES1 + | ACMD23 | SET_WR_BLK_ERASE_COUNT | + | | | ACMD51 SEND_SCR + | ACMD41 | SD_APP_OP_COND | + | | | ACMD18 SECURE_READ_MULTI_BLOCK | ACMD42 | SET_CLR_CARD_DETECT | + | | | ACMD25 SECURE_WRITE_MULTI_BLOCK + ACMD26 SECURE_WRITE_MKB + ACMD38 SECURE_ERASE + ACMD43 GET_MKB + ACMD44 GET_MID + ACMD45 SET_CER_RN1 + ACMD46 GET_CER_RN2 + ACMD47 SET_CER_RES2 + ACMD48 GET_CER_RES1 + | ACMD51 | SEND_SCR | + | | | ACMD26 SECURE_WRITE_MKB + ACMD38 SECURE_ERASE + ACMD43 GET_MKB + ACMD44 GET_MID + ACMD45 SET_CER_RN1 + ACMD46 GET_CER_RN2 + ACMD47 SET_CER_RES2 + ACMD48 GET_CER_RES1 + | ACMD18 | SECURE_READ_MULTI_BLOCK | + | | | ACMD38 SECURE_ERASE + | ACMD25 | SECURE_WRITE_MULTI_BLOCK | + | | | ACMD43 GET_MKB + | ACMD26 | SECURE_WRITE_MKB | + | | | ACMD44 GET_MID | ACMD38 | SECURE_ERASE | + | | | ACMD45 SET_CER_RN1 + | ACMD43 | GET_MKB | + | | | ACMD46 GET_CER_RN2 + | ACMD44 | GET_MID | + | | | ACMD47 SET_CER_RES2 + ACMD48 GET_CER_RES1 + | ACMD45 | SET_CER_RN1 | + | | | ACMD47 SET_CER_RES2 + ACMD48 GET_CER_RES1 + | ACMD46 | GET_CER_RN2 | + | | | | | | + | | | ACMD49 CHANGE_SECURE_AREA + | ACMD48 | GET_CER_RES1 | + | | | | ACMD49 | CHANGE_SECURE_AREA | + | | # Notes: - CMD28, CMD29 and CMD30 are optional commands. - CMD56 is a vender specific command which is not defined in the standard card. ### 4.3 SDHC Card Initialization The flow chart for UHS-I hosts and the sequence of commands to perform a signal voltage switch is shown below. Red and yellow boxes are new procedures to initialize the UHS-I card. Figure 4-4: UHS-I Host Initialization Flow Chart Figure 4-5: ACMD41 Timing Followed by Signal Voltage Switch Sequence ### 1) POWER ON: Supply Voltage for initialization. Host System applies the perating Voltage to the card. Apply more than 74 cycles of Dummy-clock to the SD card. # 2) Select operation mode (SD mode or SPI mode) In the case of SPI mode operation, the host should drive pin 1 (CD/DAT3) of the SD Card I/F to a "Low" level. Then, issue CMD0. In the case of SD mode operation, the host should drive or detect pin 1 of the SD Card I/F (Pull up register of pin 1 is pull up to "High" normally). The card maintains selected operation mode except re-issue of CMD0 or power on below is SD mode initialization procedure. ### 3) Send Interface condition command (CMD8). When the card is in the Idle state, the host shall issue CMD8 before ACMD41. In the argument, 'voltage supplied' is set to the host supply voltage and 'check pattern' is set to any 8-bit pattern. The card that accepted the supplied voltage returns R7 response. In the response, the card echoes back both the voltage range and check pattern set in the argument. If the card does not support the host supply voltage, it shall not return response and stays in the Idle state. #### 4) Send initialization command (ACMD41). When the signaling level is 3.3V, the host repeats an issue ACMD41 with HCS=1 and S18R=1 until the response indicates ready. The argument (HCS and S18R) of the first ACMD41 is effective but the all the following ACMD41 should be issued with the same argument. If Bit 31 indicates ready, the host needs to check CCS and S18A. The card indicates S18A=0, which means that the voltage switch is not allowed and the host needs to use the current signaling level. Table 4-4:S18R and S18A Combinations | Current Signaling
Level | 18R | S18A | Comment | |-------------------------------------|-----|---------------------------------|--| | 0 0 1.8V signaling is not requested | | 1.8V signaling is not requested | | | 3.3V | 1 | 0 | The card does not support 1.8V signaling | | | 1 | 1 | Start signal voltage switch sequence | | 1.8V | Χ | 0 | Already switched to 1.8V | # 5) Send voltage switch command (CMD11) S18A=1 means that the voltage switch is allowed and host issues CMD11 to invoke voltage switch sequence. By receiving CMD11, the card returns R1 response and start voltage switch sequence. No response of CMD11 means that S18A was 0 and therefore the host should not have sent CMD11. Completion of voltage switch sequence is checked by high level of DAT[3:0]. Any bit of DAT[3:0] can be checked depends on ability of the host. The card enters UHS-I mode and card input and output timings are changed (SDR12 in default) when the voltage switch sequence is completed successfully. # 6) Send ALL_SEND_CID command (CMD2) and get the Card ID (CID) # 7) Send SEND RELATIVE ADDR (CMD3) and get the RCA. RCA value is randomly changed by access, not equal zero. 8) Send SELECT / DESELECT_CARD command (CMD7) and move to the transfer state. When entering tran state, CARD_IS_LOCKED status in the R1 response should be checked (it is indicated in the response of CMD7). If the CARD_IS_LOCKED status is set to 1 in the response of CMD7, CMD42 is required before ACMD6 tounlock the card. (If the card is locked, CMD42 is required to unlock the card.) If the card is unlocked, CMD42 can be skipped. # 9) Send SET_BUS_WIDTH command (ACMD6). UHS-I supports only 4-bit mode. Host shall select 4-bit mode by ACMD6. If the card is locked, host needs to unlock the card by CMD42 in 1-bit mode and then needs to
issue ACMD6 to change 4-bit bus mode. Operating in 1-bit mode is not assured. # 10) Set driver strength. CMD6 mode 0 is used to query which functions the card supports, and to identify the maximum current consumption of the card under the selected functions. In case of UHS-I card, appropriate driver strength (default is Type-B buffer) is selected by CMD6 Function Group 3. ### 11) Set UHS-I mode current limit. UHS-I modes (Bus Speed Mode) is selected by CMD6 Function Group 1. Current limit is selected by CMD6 Function Group 4. ### Note: Function Group 4 is defined as Current Limit switch for SDR50, SDR104, DDR50. The Current Limit does not act on the card in SDR12 and SDR25. The default value of the Current Limit is 200mA (minimum setting). Then after selecting one of SDR50, SDR104, DDR50 mode by Function Group 1, host needs to change the Current Limit to enable the card to operate in higher performance. This value is determined by a host power supply capability to the card, heat release method taken by a host and the maximum current of a connector. ### 12) Tuning of sampling point CMD19 sends a tuning block to the host to determine sampling point. In SDR50, SDR104 and DDR50 modes, if tuning of sampling point is required, CMD19 is repeatedly issued until tuning is completed. Then the Host can access the Data between the SD card as a storage device. #### **Application Notes:** - 1.The host shall set ACMD41 timeout to more than 1 second to abort repeat of issuing ACMD41 when the card does not indicate ready. The timeout count starts from the first ACMD41 which is set voltage window in the argument. - 2.Once the signal voltage is switched to 1.8V, the card continues 1.8V signaling regardless of CMD0. Power cycle resets the signal voltage to 3.3V. After switching 1.8V singling, the card cannot be changed to SPI mode. - 3. Timing to Switch Signal Voltage To change signaling level at the same time between host and card, signal voltage switch sequence is invoked by CMD11 as shown in the figure below. CMD11 is issued only when S18A=1 in the response of ACMD41. Figure 4-6: Signal Voltage Switch Sequence # Steps that the host takes to start a voltage switch sequence. - 1. The host issues CMD11 to start voltage switch sequence. - 2. The card returns R1 response. - 3. The card drives CMD and DAT[3:0] to "low" immediately after the response. - 4. The host stops supplying SDCLK. The card shall start switching voltage after host stops SDCLK. The time to stop SDCLK is not specified. The host can detect whether the sequence starts by checking signal level of either one of CMD, DAT[3:0]. What signal should be checked will depend on the ability of the host. If low level is not detected, the host should abort the sequence and execute power cycle. - 5. 1.8V output of voltage regulator in card shall be stable within 5ms. The Host keeps SDCLK low at least 5ms. This means that 5ms is the maximum for the card and the minimum for the host. - 6. After 5ms from (step 4) and host voltage regulator is stable, the host starts providing SDCLK at 1.8V. - The card can check whether SDCLK voltage is 1.8V. - 7. By detecting SDCLK, the card drives CMD to high at 1.8V for at least one clock and then stops driving (tri-state). CMD is triggered by rising edge of SDCLK (SDR timing). - 8. The card can check whether host drives CMD to 1.8V through the host pull-up resister. - 9. If switching to 1.8V signaling is completed successfully, the card drives DAT[3:0] to high at 1.8V at least one clock and then stop driving (tri-state). DAT[3:0] is triggered by rising edge of SDCLK (SDR timing). DAT[3:0] shall be high within 1ms from start of providing SDCLK. Host check whether DAT[3:0] is high after 1ms from supplying SDCLK. This means that 1ms is the maximum for the card and the minimum for the host. # 4.4 Electrical Characteristics Figure 4-7: SD Card Connection Diagram # 4.4.1 Absolute Maximum Conditions **Table 4-5: Absolute Maximum Conditions** | Item | Symbol | Value | Unit | |----------------|--------|-------------------------------------|------| | Supply Voltage | Vdd | -0.3 to 3.9 | V | | Input Voltage | Vin | -0.3 to V _{DD} +0.3 (≤3.9) | V | # 4.4.2 DC Characteristics Table 4-6: DC Characteristics Threshold level for High Voltage Range) | Item | | Symbol | Condition | MIN. | Тур. | MAX. | Unit | Note | |------------------|---------------|--------|-------------------------|---------------|------|-----------|------|-------------------| | Supply Vol | tage | VDD | - | 2.7 | - | 3.6 | V | | | Input Voltage | High
Level | VIH | - | VDD*
0.625 | - | VDD+0.3 | V | | | , , , , , , | Low
Level | VIL | - | VSS-
0.3 | - | VDD*0.25 | V | | | OutputVoltage | High
Level | | VDD = Min
IOH = -2mA | VDD*
0.75 | - | - | V | | | , | Low
Level | VOL | VDD = Min
IOL= 2mA | - | - | VDD*0.125 | V | | | Input Voltage Se | etupTime | Vrs | - | - | - | 250 | ms | From 0V to VDDMIn | **Table 4-7: Peak Voltage and Leakage Current** | Parameter | Symbol | Min | Max. | Unit | Remarks | |---------------------------|--------|------|---------|------|---------| | Peak voltage on all lines | | -0.3 | VDD+0.3 | V | | | All Inputs | | | | | | | Input Leakage Current | | -10 | 10 | uA | | | All Outputs | | | | | | | Output Leakage Current | | -10 | 10 | uA | | Table 4-8: DC Characteristics (Threshold level for 1.8V signaling) | lte | em | Symbol | MIN. | MAX. | Unit | Condition | |----------|------------|--------|---------|------|------|---------------------| | Supply | Voltage | VDD | 2.7 | 3.6 | V | | | Regulato | or Voltage | VDDIO | 1.7 | 1.95 | ٧ | Generated by
VDD | | Input | High Level | VIH | 1.27 | 2.00 | V | | | Voltage | Low Level | VIL | Vss-0.3 | 0.58 | V | | | Output | High Level | VOH | 1.4 | - | V | IOH=2mA | | Voltage | Low Level | VOL | - | 0.45 | V | IOL=2mA | Table 4-9: Input Leakage Current for 1.8V Signaling | Parameter | Symbol | Min | Max. | Unit | Remarks | |-----------------------|--------|-----|------|------|------------------------------| | Input Leakage Current | | -2 | 2 | uA | DAT3 pull-up is disconnected | **Table 4-10: Power Consumption** | Item | Symbol | Condition | MIN. | Тур. | MAX. | Unit | Note | |----------------------------|---------------|-----------------------------------|------|------|------|------|----------------------| | Standby Current | ICCS | 3.6V Clock Stop | - | - | 950 | uA | @25 deg C | | | | CurrentLimit=400mA
VDD = 3.6V | - | - | 300 | | | | Operation
Current(peak) | ICCOP1
*1) | Current Limit=200mA
VDD = 3.6V | - | - | 300 | mΑ | @25 deg C | | | | (HS or DS),VDD = 3.6V | | | 300 | | | | | | Current Limit=400mA
VDD = 3.6V | | | 250 | | | | Operation | ICCOP2 | Current Limit=200mA
VDD = 3.6V | | | 200 | mΑ | @25 deg C | | Current(average) | *2) | SDR25 or HS
VDD = 3.6V | | | 200 | ША | @25 deg C | | | | SDR12 or DS,
VDD = 3.6V | | | 100 | | | | Input Voltage
SetupTime | Vrs | - | - | - | 250 | ms | From 0V
to VDDMIn | ^{*1)} Peak Current: RMS value over a 10usec period *2) Average Current: value over 1 sec period. **Table 4-11: Signal Capacitance** | Item | Symbol | Min. | Max. | Unit | Note | |--|-----------|------|------|------|--------------------------| | Pull up
Resistance | RCMD RDAT | 10 | 100 | kΩ | | | Total bus capacitance for each signal line | CL | ı | 40 | pF | 1
cardCноsт+Св∪s≦30pF | | Card
capacitance
for signal pin | CCARD | _ | 10 | pF | | | Pull up
Resistance
inside card
(pin1) | RDAT3 | 10 | 90 | kΩ | | | Capacity
Connected to
Power line | CC | _ | 5 | pF | | Note: WP pull-up (Rwp) Value is depend on the Host Interface drive circuit. # 4.4.3 AC Characteristics (Default Speed) Figure 4-8: AC Timing Diagram (Default Speed Mode) **Table 4-12: AC Characteristics (Default Speed)** | ltem | Symbol | Min. | Max. | Unit | Note | |--|--------|--------------|------|------|---------------------------| | Clock Frequency (In any Sates) | fsty | 0 | 25 | MHz | CCARD ≦ 10pF
(1Card) | | Clock
Frequency (Data
transfer Mode) | fPP | 0 | 25 | MHz | | | Clock
Frequency (Card
identification Mode) | fOD | 0/100
*1) | 400 | kHz | | | Clock Low Time | tWL | 10 | _ | ns | | | Clock High Time | tWH | 10 | 1 | ns | | | Clock Rise Time | tTLH | 1 | 10 | ns | | | Clock Fall Time | tTHL | 1 | 10 | ns | | | Input set-up Time | tISU | 5 | _ | ns | | | Input Hold Time | tIH | 5 | _ | ns | | | Output Delay time
during DataTransfer
Mode | tODLY | 0 | 14 | ns | CL ≦ 40pF (
1Card) | | Output Delay time during Identification Mode | tODLY | 0 | 50 | ns | | ^{*1) 0}Hz means to stop the clock. The given minimum frequency range is for cases were continues clock is required. Figure 4-9: AC Timing Diagram (High Speed Mode) **Table 4-13: AC Characteristics (High Speed)** | Item | Symbol | Min. | Max. | Unit | Note | |--|--------|------|------|------|-------------------| | Clock
Frequency (During Data
transfer) | fPP | 0 | 50 | MHz | Ccard≤10pF(1card) | | Clock Low Time | tWL | 7 | _ | ns | Ccard≤10pF(1card) | | Clock High Time | tWH | 7 | _ | ns | Ccard≤10pF(1card) | | Clock Rise Time | tTLH | - | 3 | ns | Ccard≤10pF(1card) | | Clock Fall Time | tTHL | - | 3 | ns | Ccard≤10pF(1card) | | Input Setup Time | tISU | 6 | _ | ns | Ccard≤10pF(1card) | | Input Hold Time | tIH | 2 | _ | ns | Ccard≤10pF(1card) | | Output Delay Time | TODLY | _ | 14 | ns | Ccard≤40pF(1card) | | Output Hold Time | ТОН | 2.5 | - | ns | Ccard≤15pF(1card) | | Item | Symbol | Min. | Max. | Unit | Note | |--|--------|------|------|------|-------------------| | Total System capacitance for each line | CL | - | 40 | рF | Ccard≤15pF(1card) | # 4.4.2 AC Characteristics (SDR104, SDR50, SDR25, SDR12) Figure 4-10: AC Timing Diagram (SDR104, SDR50, SDR25, SDR12 modes input) Table 4-14: Clock Signal
Timing of SDR104, SDR50, SDR25, SDR12 modes input | Symbol | Min. | Max. | Unit | Remark | |------------|------|--------------|------|--| | tclk | 4.80 | - | ns | 208MHz (Max.), Between rising edge, Vc⊤= 0.975V | | tcr, tcf | - | 0.2*
tCLK | ns | tcr, tcr < 0.96ns (max.) at 208MHz, Ccard=10pF tcr, tcr, < 2.00ns (max.) at 100MHz, Ccard=10pF | | Clock Duty | 30 | 70 | % | | Figure 4-11: AC Timing Diagram (SDR104, SDR50, SDR25, SDR12 input timing) Table 4-15: Clock input Timing of SDR104, SDR50, SDR25, SDR12 input timing | Symbol | Min. | Max. | Unit | SDR104 mode | |--------|------|------|------|-----------------------------| | tıs | 1.40 | - | ns | Ccard =10pF, Vct= 0.975V | | tıн | 0.80 | - | ns | Ccard =5pF, Vct= 0.975V | | Symbol | Min. | Max. | Unit | SDR12, SDR25 and SDR50 mode | | | | | | | | tıs | 3.00 | - | ns | Ccard =10pF, Vct= 0.975V | Figure 4-12: Output Timing of Fixed Window Table 4-16: Output Timing of Fixed Data Window (SDR50, SDR25, SDR12) | Symbol | Min. | Max. | Unit | Remark | |--------|------|------|------|---| | todly | | 7.5 | ns | tclk>=10.0ns, Cl=30pF, using driver Type B, for SDR50 | | todly | | 14 | ns | tclk>=20.0ns, Cl=40pF, using driver Type B, for SDR25 and SDR12 | | tон | 1.5 | - | ns | Hold time at the todly (min.), CL=15pF | Figure 4-13: Output Timing of Variable Window Table 4-17: Output Timing of Variable Data Window (SDR104) | Symbol | Min. | Max. | Unit | Remark | | | | | | |--------|------|-------|------|--|--|--|--|--|--| | top | 0 | 2 | UI | Card Output Phase | | | | | | | Δtop | -350 | +1550 | ps | Delay variation due to temperature change after tuning | | | | | | | todw | 0.60 | - | UI | todw=2.88ns at 208MHz | | | | | | Card ΔtOP is the total allowable shift of output valid window (tODW) from last system Tuning procedure. Card ΔtOP =1550pS for junction temperature of ΔT = 90°C during operation. Card ΔtOP =-350pS for junction temperature of ΔT = -20°C during operation. # 6.4.5.2 Bus Timing Specification (DDR50) Figure 4-14: Clock Signal Timing Table 4-18: Clock Signal Timing of DDR50 | Symbol | Min. | Max. | Unit | Remark | |------------|------|-------------------|------|--| | tclk | 20 | - | ns | 50MHz (Max.), Between rising edge | | tcr, tcf | - | 0.2* t clк | ns | tcr, tcr, < 4.00ns (max.) at 50MHz, Ccard=10pF | | Clock Duty | 45 | 55 | % | | CMD signal timings are not shown in the figure below but For CMD signal timing refers to Figure 4-13 (Card Input Timing) and Figure 4-14 (Output Timing of Fixed Data Window) for Timing Diagram of SDR mode). Figure 4-15: Timing Diagram DAT Inputs/Outputs Referenced to CLK in DDR50 Mode Table 4-19: BUS Timings – Parameters Values (DDR50 mode) | Parameter | Symbol | Min | Max | Unit | Remark | | | | |------------------------------|-----------|------|-----|------|------------------------|--|--|--| | Input CMD (referenced to CLK | rising ed | lge) | | | | | | | | Input set-up time (*) | tısu | 6 | - | ns | Ccard ≤ 10 pF (1 card) | | | | | Input hold time | tıн | 0.8 | - | ns | Ccard ≤ 10 pF (1 card) | | | | | Parameter | Symbol | Min | Max | Unit | Remark | | | | | | |--|-------------------|-------|---------|-------|------------------------|--|--|--|--|--| | Output CMD (referenced to CLK rising edge) | | | | | | | | | | | | Output Delay time during Data
Transfer Mode | todly | - | 13.7 | ns | C∟ ≤ 30 pF (1 card) | | | | | | | Output hold time | tон | 1.5 | - | ns | C∟ ≥ 15pF (1 card) | | | | | | | Inputs DAT (referenced to CLK | rising a | nd fa | lling e | dge | s) | | | | | | | Input set-up time | tısu2x | 3 | - | ns | Ccard ≤ 10 pF (1 card) | | | | | | | Input hold time | t _{IH2x} | 0.8 | - | ns | Ccard ≤ 10 pF (1 card) | | | | | | | Outputs DAT (referenced to CL | .K rising | and f | alling | j edg | jes) | | | | | | | Output Delay time during Data
Transfer Mode | todly2x | | 7.0 | ns | C∟ ≤ 25 pF (1 card) | | | | | | | Output hold time | todly2x | 1.5 | - | ns | C∟ ≥ 15pF (1 card) | | | | | | ^(*) Input set-up time: tISU(min) is 6ns in PHYSICAL LAYER SPECIFICATION Ver.3.01 # 5 Card Internal Information # 5.1 Security Information MKB (Media Key Block) and Media ID are Standard Information. This information is in compliance with the CPRM. **Note:** The security information is NOT Development information for evaluation. The Host System shall be compliance with the CPRM to use the security function. This information is kept as confidential because of security reasons. # **5.2 SD Card Registers** The device has six Registers and two Status information: OCR, CID, CSD, RCA, DSR, SCR and SD Card Status, SD Status as same as SD card. DSR IS NOT SUPPORTED in this card. There are two types of register groups. - MMC compatible registers: OCR, CID, CSD, RCA, DSR, and - SCR SD card Specific: SD Status **Table 5-1: SD card Registers** | Register
Name | Bit
Width | Description | |------------------|--------------|-------------------------------| | CID | 128 | Card Identification number | | RCA | 16 | Relative Card Address | | DSR | 16 | Optional : Driver Stage | | CSD | 128 | Card Specific Data | | SCR | 64 | SD Configuration | | OCR | 32 | Operation conditions | | CSR | 32 | Card Status | | CMD6 | 512 | Switch Function Status | | SD
Status | 512 | Status bits and card features | # 5.2.1 OCR Register This 32-bit register describes operating voltage range and status bit in the power supply. **Table 5-2: OCR Register Definition** | OCR bit | 00 | D Fields Definition | | | Response Value | | | | | |----------|-----------------------|-----------------------------------|-------|-------------------------------------|----------------------------|--|--|--|--| | position | OCR Fields Definition | | 32GB | | | | | | | | 0-3 | | reserved | 0 | 0 | 0 | | | | | | 4-6 | | reserved | 0 | 0 | 0 | | | | | | 7 | | Reserved for Low
Voltage Range | 0 | 0 | 0 | | | | | | 8-14 | | reserved | 0 | 0 | 0 | | | | | | 15 | | 2.7 - 2.8 | 1 | 1 | 1 | | | | | | 16 | VDD | 2.8 - 2.9 | 1 | 1 | 1 | | | | | | 17 | voltage
Window | 2.9 - 3.0 | 1 | 1 | 1 | | | | | | 18 | vviildow | 3.0 - 3.1 | 1 | 1 | 1 | | | | | | 19 | | 3.1 - 3.2 | 1 | 1 | 1 | | | | | | 20 | | 3.2 - 3.3 | 1 | 1 | 1 | | | | | | 21 | | 3.3 - 3.4 | 1 | 1 | 1 | | | | | | 22 | | 3.4 - 3.5 | 1 | 1 | 1 | | | | | | 23 | | 3.5 - 3.6 | 1 | 1 | 1 | | | | | | 24(1) | Switc | ching to 1.8V Accepted
(S18A) | 1 | 1 | 1 | | | | | | 25-29 | | reserved | 0 0 0 | | | | | | | | 30 | Card C | Capacity Status (CCS)(2) | | 0=SD Memory Card, 1= (SDHC or SDXC) | | | | | | | 31 | Card po | wer up status bit (busy)(3) | | | " 0 " = busy " 1 " = ready | | | | | #### Notes: - 1. bit24: Only UHS-I card supports this bit. - 2. bit30: This bit is valid only when the card power up status bit is set. - 3. bit31: This bit is set to LOW if the card has not finished the power up routine. - bit 23-4: Describes the SD Card Voltage - bit 31 indicates the card power up status. Value "1" is set after power up and initialization procedure completed. # 5.2.2 CID Register The CID (Card Identification) register is 128-bit width. It contains the card identification information. The Value of CID Register is vender specific. Table 5-3: CID register | Field | Width | CID- | | Initial Value | | Comment | |-------|-------|-----------|--------------|---------------|--------------|---| | rieia | wiatn | slice | 32GB | 64GB | 128GB | Comment | | MID | 8 | [127:120] | | 0x02 | | Manufacture ID(0x02 = Toshiba) | | OID | 16 | [119:104] | | 0x544D | | OEM/Application ID (0x544D("TM") = Toshiba) | | | | | | | | 32GB:"UC0D5" | | PNM | 40 | [103:64] | 0x5543304435 | 0x5543304535 | 0x5543304635 | 64GB:"UC0E5" | | | | | | | | 128GB:"UC0F5" | | PRV | 8 | [63:56] | | 0x52 | | Product Revision | | PSN | 32 | [55:24] | | 0xnnnnnnnn | | Product serial number | | - | 4 | [23:20] | | 0x0 | | reserved | | MDT | 12 | [19:8] | | 0xmmm | | Manufacturing data ¹ | | CRC | 7 | [7:1] | | CRC | | CRC 7 Checksum (chapter 7, SD Physical spec | | - | 1 | [0:0] | | 0x1 | | not used, always 1 | #### Notes: CID-Slice [11:8] Month Field (Exp. 1h = January) CID-Slice [19:12] Year Field (Exp. 0h = 2000) # 5.2.3 CSD Register CSD is Card-Specific Data register provides information on 128bit width. Some field of this register can writable by PROGRAM_CSD (CMD27). Table 5-4: CSD register | Field | | VA/i altha | Cell | CSD- | | Initial Va | lue | Commont | |------------|--------|------------|------|-----------|------------|------------|-------|--| | | | Width | Туре | slice | 32GB | 64GB | 128GB | Comment | | CSD_STRUC | CTURE | 2 | R | [127:126] | | | | CSD version 2.0(High Capacity and Extended Capacity) | | - | | 6 | R | [125:120] | | 00_0000 |)b | reserved | | TAAC | | 8 | R | [119:112] | | 0000_111 | 10b | 1ms(time unit) * 1.0(time value) = 1ms | | NSAC | | 8 | R | [111:104] | | 0000_000 |)0b | 0 clock Cycle | | | SDR104 | | | | 0010_ | 1011b | | 200Mbit/s | | | SDR50 | | | | 0000_ | 1011b | | 100Mbit/s | | | DDR50 | | | | 0000_ | 1011b | | 100Mbit/s | | TRAN_SPEED | SDR25 | 8 | R | [103:96] | 0101_ | 0101_1010b | | 50Mbit/s | | | SDR12 | | | | 0011_0010b | | | 25Mbit/s | | | HS | | | | 0101_ | 0101_1010b | | 50Mbit/s | | | DS | | | | 0011_ | 0010b | | 25Mbit/s | ^{1.} The manufacturing date composed of two-hexadecimal digits. | | | Cell | CSD- | In | Initial Value | | | |------------------------|-------|------|---------|-------|---------------|--------|---| | Field | Width | Туре | slice | | |
128GB | Comment | | CCC | 12 | R | [95:84] | 0101 | _1011_ | 0101b | Class 0,2,4,5,7,8,10 are supported | | READ_BL_LEN | 4 | R | [83:80] | | 1001b | ı | 512Bytes | | READ_BL_PARTIAL | 1 | R | [79:79] | | 0 | | " 0 ": Partial block read is inhibited and only unit of block access is allowed. | | WRITE_BLK_MISALIG
N | 1 | R | [78:78] | | 0 | | " 0 " : Not allowed on this card | | READ_BLK_MISALIGN | 1 | R | [77:77] | | 0 | | " 0 " : Invalid on this card | | DSR_IMP | 1 | R | [76:76] | | 0 | | " 0 " :DSR NOT implemented | | - | 6 | R | [75:70] | (| 000_000 | Ob | reserved | | C_SIZE | 22 | R | [69:48] | EE87h | 1DD17h | 3B9EFh | memory capacity = (C_SIZE+1) * 512K byte | | - | 1 | R | [47:47] | | 0 | | reserved | | ERASE_BLK_EN | 1 | R | [46:46] | | 1 | | " 1 " :Can erase by WRITE_BL_LEN unit
(512 Bytes) | | SECTOR_SIZE | 7 | R | [45:39] | 1 | 11_111 | 1b | This size of an erasable sector. This field is fixed to 7F-h. Sector size = 64KBytes. | | WP_GRP_SIZE | 7 | R | [38:32] | 0 | 000_000b | | This size of a write protected group. This field is fixed to 00-h. 1 Write Protect Group = 1sector. | | WP_GRP_ENABLE | 1 | R | [31:31] | | 0 | | value of 0 means no group write protection possible. | | - | 2 | R | [30:29] | | 00b | | reserved | | R2W_FACTOR | 3 | R | [28:26] | | 010b | | This field is fixed to "2-h", which indicates 4 multiples. However, host should not use this factor and should use 250ms for write timeout. | | WRITE_BL_LEN | 4 | R | [25:22] | | 1001b | 1 | " 9 ": 512Bytes on this card. | | WRITE_BL_PARTIAL | 1 | R | [21:21] | | 0 | | " 0 ": Only the WRITE_BL_LEN size or 512Bytes are available | | - | 5 | R | [20:16] | | 0_0000 | b | reserved | | FILE_FORMAT_GRP | 1 | R | [15:15] | | 0 | | This field is set to "0". Host should not use this field. | | COPY | 1 | R/W | [14:14] | | 0 | | " 0 " : Original on this card | | PERM_WRITE_PROTE
CT | 1 | R/W | [13:13] | 0 | | | " 0 ": Not protected / Writable on this card | | TMP_WRITE_PROTEC T | 1 | R/W | [12:12] | | 0 | | " 0 ": Not protected / Writable on this card | | FILE_FORMAT | 2 | R | [11:10] | | 00b | | " 0 ": Hard disk-like file system with partition table on this card. | | - | 2 | R | [9:8] | | 00b | | reserved | | Field | Width | Cell | CSD- | | nitial Val | | Comment | |-------|-------------|------|-------|------|------------|-------|--------------------| | Field | rieid wiatr | | slice | 32GB | 64GB | 128GB | Comment | | CRC | 7 | R/W | [7:1] | | CRC | | CRC 7 Checksum | | - | 1 | - | [0:0] | | 1 | | not used, always 1 | #### Notes: 1.Cell Types: R: Read Only, R/W: Writable and Readable, R/W(1): One-time Writable / Readable 2. Erase of one data block is not allowed in this card. This information is indicated by "ERASE_BLK_EN". Host System should refer this value before one data block size erase. # 5.2.4 RCA Register The writable 16bit relative card address register carries the card address in SD Card mode. # 5.2.5 DSR Register This register is not used # 5.2.6 SCR Register CR(SD Card Configuration Register) provides information on SD Memory Card's special features. The size of SCR Register is 64 bit and al bits are read only Table 5-5: The SCR Fields | Field | Width | SCR-
slice | | itial Val
64GB 1 | | Comment | |-----------------------|-------|---------------|-----|---------------------|-----|--| | SCR_STRUCTURE | 4 | [63:60] | | 0x0 | | SCR version 1.0(Version 1.01-3.00) | | SD_SPEC | 4 | [59:56] | | | | " 2 " : Version 2.00 or Version 3.0X, Version 4.xx (
Refer to SD_SPEC3 and SD_SPEC4) | | DATA_STAT_AFTER_ERASE | 1 | [55:55] | | 0x1 | | " 1 " : on this card | | SD_SECURITY | 3 | [54:52] | 0x3 | 0x4 | | "3": Security Version 2.00 "4": Security Version 3.00 | | SD_BUS_WIDTHS | 4 | [51:48] | | 0x5 | | " 0101 " : 1 and 4 bit supported | | SD_SPEC3 | 1 | [47:47] | | 0x1 | | " 1 " : Version 3.0X, Version 4.xx (Refer to SD_SPEC4) | | EX_SECURITY | 4 | [46:43] | | 0x0 | | Extended Security is not supported. | | SD_SPEC4 | 1 | [42:42] | | 0x1 | | " 1 " : Version 4.xx | | - | 6 | [41:36] | 0x0 | | | reserved | | CMD_SUPPORT | 4 | [35:32] | 0x3 | | | " 11 " : CMD23 and CMD20 support | | - | 32 | [31:0] | 0х | 3202nn | inn | reserved for manufacture usage | Note: All bits are read only # 5.2.7 Card Status This field is intended to transmit the card's status information to the host. Table 5-6: Card Status | Identifier | Bits | Type Va | lue | |------------|------|---------|-----| | | | | | | Identifier | Bits | Туре | Value | | | |--------------------|-----------|----------|---|--|--| | OUT_OF_RANGE | 31 | E R
X | " 0 " = no error , " 1 " = error | | | | ADDRESS_ERROR | 30 | E R
X | " 0 " = no error , " 1 " = error | | | | BLOCK_LEN_ERROR | 29 | E R
X | " 0 " = no error , " 1 " = error | | | | ERASE_SEQ_ERROR | 28 | ΕR | " 0 " = no error , " 1 " = error | | | | ERASE_PARAM | 27 | E R
X | " 0 " = no error , " 1 " = error | | | | WP_VIOLATION | 26 | E R
X | " 0 " = not protected , " 1 " = protected | | | | CARD_IS_LOCKED | 25 | SX | " 0 " = card unlocked , " 1 " = card locked | | | | LOCK_UNLOCK_FAILED | 24 | E R
X | " 0 " = no error , " 1 " = error | | | | COM_CRC_ERROR | 23 | ΕR | " 0 " = no error , " 1 " = error | | | | ILLEGAL_COMMAND | 22 | ΕR | " 0 " = no error , " 1 " = error | | | | CARD_ECC_FAILED | 21 | E R
X | " 0 " = success , " 1 " = failure | | | | CC_ERROR | 20 | E R
X | 0 " = no error , " 1 " = error | | | | ERROE | 19 | E R
X | 0 " = no error , " 1 " = error | | | | - | 18 | | reserved | | | | - | 17 | | reserved for DEFERRED_RESPONSE | | | | CSD_OVERWRITE | 16 | E R
X | " 0 " = no error , " 1 " = error | | | | WE_ERASE_SKIP | 15 | E R
X | " 0 " = not protected , " 1 " = protected | | | | CARD_ECC_DISABLED | 14 | SX | " 0 " = enabled , " 1 " = disabled | | | | ERASE_STATE | 13 | SR | " 0 " = cleared , " 1 " = set | | | | CURRENT_STATE | 12 –
9 | SX | " 0 " = idle , " 1 " = ready , " 2 " = ident , " 3 " = stanby " 4 " = tran , " 5 " = data
" 6 " = rcv , " 7 " = prg " 8 " = dis , " 9 – 14 " = reserved " 15 " = reserved for la
mode | | | | READY_FOR_DATA | 8 | SX | " 0 " = not ready , " 1 " = ready | | | | - | 7,6 | | - | | | | APP_CMD | 5 | SR | " 0 " = Disabled , " 1 " = Enabled | | | | - | 4 | | reserved for SD I/O Card | | | | AKE_SEQ_ERROR | 3 | ΕR | R " 0 " = no error , " 1 " = error | | | | - | 2 | | reserved | | | | - | 1,0 | | reserved | | | # Notes: E: Error bit , S: Status bit , R: Detected and set for actual command response. X: Detected and set during command execution. # 5.2.8 SD Status Table 5-7: SD Status | Field | SD Initial Value
Field Width Type Status - | | | Comment | | | | |------------------------|---|------|-----------|------------|-----------------------|--|--| | rield | Widtii | Турс | slice | 32GB | 64GB 128GB | | Comment | | | | | | | 00b | | 1bit: HS1bit, SD1bit, HSSPI,
SPI | | DAT_BUS_WIDTH | 2 | SR | [511:510] | 10b | | | 4bit: SDR104, DDR50,
SDR50, SDR25, SDR12,
HS4bit, SD4bit | | SECUERED_MODE | 1 | SR | [509] | | 1 | | Secured Mode | | reserved | 8 | | [508:502] | (| 00x0 | | reserved | | reserved | 6 | | [501:496] | (| 00x0 | | reserved | | SD_CARD_TYPE | 16 | SR | [495:480] | 0: | x0000 | | Regular SD RD/WR card | | SIZE_OF_PROTECTED_AREA | 32 | SR | [479:448] | 0x05000000 | 0x05000000 0x08000000 | | 32GB:81,920KB
64GB:131,072KB
128GB:131,072KB | | SPEED_CLASS | 8 | SR | [447:440] | 0x04 | | | Class10 | | PERFORMANCE_MOVE | 8 | SR | [439:432] | 0x02 0x00 | | | 0x02:2MB/s、0x00:0MB/s | | AU_SIZE | 4 | SR | [431:428] | | 0x9 | | 0x9:4MB | | reserved | 4 | | [427:424] | | 0x0 | | reserved | | ERASE_SIZE | 16 | SR | [423:408] | 0: | x0020 | | 32AU | | ERASE_TIMEOUT | 6 | SR | [407:402] | (| 0x01 | | 1sec | | ERASE_OFFSET | 2 | SR | [401:400] | 11b | | | 3sec | | UHS_SPEED_GRADE | 4 | SR | [399:396] | 0x3 | | | 0x3:30MB/sec and above | | UHS_AU_SIZE | 4 | SR | [395:392] | 0xC | | | 0xC:16MB | | - | 80 | | [391:312] | ALL 0 | | | reserved | | - | 312 | | [311:0] | ALL 0 | | | reserved for manufacture | S : Status bit , R : Set based on Command Response # 5.2.9 Switch Function Status Switch function command (CMD6) is used to switch or expand memory card functions. Currently four function groups are defined: - (1) Access Mode: Selection of SD bus interface speed modes. - (2) Command System: A specific function can be extended and controlled by a set of shared commands. - (3) Driver Strength Selection of suitable output driver strength in UHS-I modes depends on host environment. - (4) Power Limit Selection to limit the maximum power depends on host power supply capability and heat release capability. **Table 5-8: Switch Function Status** | | | | Bus | Set Value | Value | | | | |-----------------------------------|-------|-----------|----------------------------|-----------|-------------------------|-------------------------|-------------------------|--| | Description | Width | Bits | Speed
Mode | of Gr4 | 32GB | 64GB | 128GB | | | | | | | 0x0 | 0x00C8
(0.72W/200mA) | 0x00C8
(0.72W/200mA) | 0x00C8
(0.72W/200mA) | | | | | | | 0x1 | 0x00FA
(0.90W/250mA) | 0x00FA
(0.90W/250mA) | 0x00FA
(0.90W/250mA) | | | | | | SDR104/
SDR50/
DDR50 | 0x2 | 0x00FA
(0.90W/250mA) | 0x00FA
(0.90W/250mA) | 0x00FA
(0.90W/250mA) | | | | | | | 0x3 | 0x00FA
(0.90W/250mA) | 0x00FA
(0.90W/250mA) | 0x00FA
(0.90W/250mA) | | | Maximum Current Consumption | 16 | [511:496] | | 0x4 | 0x00FA
(0.90W/250mA) | 0x00FA
(0.90W/250mA) | 0x00FA
(0.90W/250mA) | | | Concumption | | | SDR25 | 0x0~0x4 | 0x00C8
(0.72W/200mA) | 0x00C8
(0.72W/200mA) |
0x00C8
(0.72W/200mA) | | | | | | SDR12 | 0x0~0x4 | 0x0064
(0.36W/100mA) | 0x0064
(0.36W/100mA) | 0x0064
(0.36W/100mA) | | | | | | HS | 0x0 | 0x00C8
(0.72W/200mA) | 0x00C8
(0.72W/200mA) | 0x00C8
(0.72W/200mA) | | | | | | DS | 0x0 | 0x0064
(0.36W/100mA) | 0x0064
(0.36W/100mA) | 0x0064
(0.36W/100mA) | | | Function Gr
6,
information. | 16 | [495:480] | - | - | 0x8001 | | | | | Function Gr
5,
information. | 16 | [479:464] | - | - | 0x8001 | | | | | Function
Gr4, | 16 | [463:448] | SDR104-
12 DDR50 | - | 0x801F | | | | | information. | | | HS,DS | - | | 0x8001 | | | | Function
Gr3, | 16 | [447:432] | SDR104-
12 DDR50 | - | 0x800F | | | | | information. | | | HS,DS | - | 0x8001 | | | | | Function Gr
2,
information. | 16 | [431:416] | - | - | 0x8001 | | | | | Function
Gr1,
information. | 16 | [415:400] | SDR104-
12 DDR50 | - | 0x801F | | | | | Description | Width | Bits | Bus
Speed | Set Value | Value | | | | | | |---------------------------------------|-------|-----------|--------------|-----------|--------------------|------------------|-------|--|--|--| | Description | wiatn | DIIS | Mode | of Gr4 | 32GB | 64GB | 128GB | | | | | | | | HS,DS | - | 0x8003 | | | | | | | Function
Gr6,
information. | 4 | [399:396] | - | - | Set Response Value | | | | | | | Function
Gr5,
information. | 4 | [395:392] | - | - | ; | Set Response Val | ue | | | | | Function
Gr4,
information. | 4 | [391:388] | - | - | ; | Set Response Val | ue | | | | | Function
Gr3,
information. | 4 | [387:384] | - | - | ; | Set Response Val | ue | | | | | Function
Gr2,
information. | 4 | [383:380] | - | - | Set Response Value | | | | | | | Function
Gr1,
information. | 4 | [379:376] | - | - | Set Response Value | | | | | | | Data
Structure
Version | 8 | [375:368] | - | - | 0x00 | | | | | | | Busy Status
of functions
in Gr6 | 16 | [367:352] | - | - | 0x0000 | | | | | | | Busy Status
of functions
in Gr5 | 16 | [351:336] | - | - | 0x0000 | | | | | | | Busy Status
of functions
in Gr4 | 16 | [335:320] | - | - | 0x0000 | | | | | | | Busy Status
of functions
in Gr3 | 16 | [319:304] | - | - | 0x0000 | | | | | | | Busy Status
of functions
in Gr2 | 16 | [303:288] | - | - | 0x0000 | | | | | | | Busy Status
of functions
in Gr1 | 16 | [287:272] | - | - | 0x0000 | | | | | | | Reserved | 272 | [271:0] | - | - | ALL 0 | | | | | | # 5.3 Logical Format The SD card is formatted before shipping to be compliant to the SD Card FILE SYSTEM SPECIFICATION. The following parameters may be changed if the host system is not compliant with the SD Card Format Specification. The data of the logical format is described in section 5.3.3 (128GB Card), section 5.3.4 (64GB Card) and section 5.3.5 (32GB Card). # 5.3.1 SD card Capacities Table 5-9: SD Card capacities | | Card Capacities | | | | | | | | | | |------------------------|-----------------|------------|-------------|------------|-------------|-------------|--|--|--|--| | Item | 32GB | | 64G | В | 128GB | | | | | | | | Sector | КВ | Sector | КВ | Sector | КВ | | | | | | Whole
Capacity | 62,660,608 | 31,330,304 | 125,231,104 | 62,615,552 | 250,331,136 | 125,165,568 | | | | | | User Data
Area Size | 62,529,536 | 31,264,768 | 125,067,264 | 62,533,632 | 250,068,992 | 125,034,496 | | | | | | Protected
Area Size | 131,072 | 65,536 | 163,840 | 81,920 | 262,144 | 131,072 | | | | | # 5.3.2 SD card System Information Table 5-10: SD Card System information | | Item | Card Capacities | | | | | | |-----------|---------------------------------|-----------------|--------|--------|--|--|--| | | Item | 32GB | 64GB | 128GB | | | | | User Data | Data Boundary unit size
(KB) | 4,096 | 16,384 | 16,384 | | | | | Area | Cluster Size (KB) | 32 | 128 | 128 | | | | | Protected | Data Boundary unit size
(KB) | 16 | 16 | 16 | | | | | Area | Cluster Size (KB) | 16 | 16 | 16 | | | | # 5.3.3 Data of the logical format of a 128GB Card (Contact Viking) # 5.3.4 Data of the logical format of a 64GB Card (Contact Viking) # 5.3.5 Data of the logical format of a 32GB Card (Contact Viking) # 6 SD Specification Compliance # 1) Non Supported Registers: DSR Register (Optional register: PHISYCAL LAYER SPECIFICATION 5.5) # 2) Non Supported Functions: Programmable Card Output Driver (Optional in PHYSICAL LAYER SPECIFICATION 6.5) Card 's Internal Write Protect (Optional in PHYSICAL LAYER SPECIFICATION 4.3.6.) ### 3) Non Specified Command: CMD4 SET_DSR CMD28 SET_WRITE_PROT CMD29 CLR_WRITE_PROT CMD30 SEND_WRITE_PROT CMD56 GEN_CMD # 7 Reliability Guidance This reliability guidance is intended to provide some guidance related to using raw NAND flash. Although random bit errors may occur during use, it does not necessarily mean that a block is bad. Generally, a block should be marked as bad when a program status failure or erase status failure is detected. The other failure modes may be recovered by a block erase. ECC treatment for read data is mandatory due to the following Data Retention and Read Disturb failures. ### Write/Erase Endurance Write/Erase endurance failures may occur in a cell, page, or block, and are detected by doing a status read after either an auto program or auto block erase operation. The cumulative bad block count will increase along with the number of write/erase cycles. #### Data Retention The data in memory may change after a certain amount of storage time. This is due to an electrical charge loss or charge gain. After block erasure and reprogramming, the block may become usable again. Also write/erase endurance deteriorates data retention capability. The figure below shows a generic trend of relationship between write/erase endurance and data retention. ### Read Disturb A read operation may disturb the data in memory. The data may change due to charge gain. Usually, bit errors occur on other pages in the block, not the page being read. After a large number of read cycles (between block erases), a tiny charge may build up and can cause a cell to be soft programmed to another state. After block erasure and reprogramming, the block may become usable again. Considering the above failure modes, Viking recommends following usage model: Avoid any excessive iteration of resets and initialization sequences (card identification mode) as far much as possible after power-on, which may result in read disturb failure. The resets include hardware resets and software resets. i.e. 1) The iteration of the following command sequence: CMD0 -ACMD41 (The assertion of ACMD41 implies a count of internal read operation in Raw NAND. • CMD0: Go idle state command, • ACMD41 : SD send operation command 2) Iteration of the following command: ACMD43 • ACMD43 : Get MKB command # 8 SD Card Mechanical Dimensions ### Note: - 1. All dimensions in mm - 2. Tolerance is \pm 0.15 mm